scholarly journals Structural Features of the Interaction between Human 8-Oxoguanine DNA Glycosylase hOGG1 and DNA

Acta Naturae ◽  
2014 ◽  
Vol 6 (3) ◽  
pp. 52-65 ◽  
Author(s):  
V. V. Koval ◽  
D. G. Knorre ◽  
O. S. Fedorova

The purpose of the present review is to summarize the data related with the structural features of interaction between the human repair enzyme 8-oxoguanine DNA glycosylase (hOGG1) and DNA. The review covers the questions concerning the role of individual amino acids of hOGG1 in the specific recognition of the oxidized DNA bases, formation of the enzyme-substrate complex, and excision of the lesion bases from DNA. Attention is also focused upon conformational changes in the enzyme active site and disruption of enzyme activity as a result of amino acid mutations. The mechanism of damaged bases release from DNA induced by hOGG1 is discussed in the context of structural dynamics.

1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


Endocrinology ◽  
2005 ◽  
Vol 146 (11) ◽  
pp. 4834-4843 ◽  
Author(s):  
Marie-Christine Nlend ◽  
David M. Cauvi ◽  
Nicole Venot ◽  
Odile Chabaud

Our previous studies showed that sulfated tyrosines (Tyr-S) are involved in thyroid hormone synthesis and that Tyr5, the main hormonogenic site of thyroglobulin (Tg), is sulfated. In the present paper, we studied the role of Tyr-S in the formation and activity of the peroxidase-Tg complex. Results show that noniodinated 35SO3-Tg specifically binds (Kd = 1.758 μm) to immobilized lactoperoxidase (LPO) via Tyr-S linkage by using saturation binding and competition experiments. We found that NIFEY-S, a 15-amino acid peptide corresponding to the NH2-end sequence of Tg and containing the hormonogenic acceptor Tyr5-S, was a better competitor than cholecystokinin and Tyr-S. 35SO3-Tg, iodinated without peroxidase, bound to LPO with a Kd (1.668 μm) similar to that of noniodinated Tg, suggesting that 1) its binding occurs via Tyr-S linkage and 2) Tyr-S requires peroxidase to be iodinated, whereas nonsulfated Tyr does not. Iodination of NIFEY-S with [125I]iodide showed that Tyr5-S iodination increased with LPO concentration, whereas iodination of a nonsulfated peptide containing the donor Tyr130 was barely dependent on LPO concentration. Enzymatic hydrolysis of iodinated Tg or NIFEY-S showed that the amounts of sulfated iodotyrosines also depended on LPO amount. Sulfated iodotyrosines were detectable in the enzyme-substrate complex, suggesting they have a short life before the coupling reaction occurs. Our data suggest that after Tyr-S binding to peroxidase where it is iodinated, the sulfate group is removed, releasing an iodophenoxy anion available for coupling with an iodotyrosine donor.


2020 ◽  
Author(s):  
Vahe Galstyan ◽  
Kabir Husain ◽  
Fangzhou Xiao ◽  
Arvind Murugan ◽  
Rob Phillips

Key enzymatic processes in biology use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. Kinetic proofreading typically requires several dedicated structural features in the enzyme, such as a nucleotide hydrolysis site and multiple enzyme–substrate conformations that delay product formation. Such requirements limit the applicability and the adaptability of traditional proofreading schemes. Here, we explore an alternative conceptual mechanism of error correction that achieves delays between substrate binding and subsequent product formation by having these events occur at distinct physical locations. The time taken by the enzyme–substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not require dedicated structural elements on the enzyme, making it easier to overlook in experiments but also making proofreading tunable on the fly. We discuss how tuning the length scales of enzyme or substrate concentration gradients changes the fidelity, speed and energy dissipation, and quantify the performance limitations imposed by realistic diffusion and reaction rates in the cell. Our work broadens the applicability of kinetic proofreading and sets the stage for the study of spatial gradients as a possible route to specificity.


Author(s):  
Paul Engel

‘Structure for catalysis’ details the various patterns of enzyme mechanism and the various structural features helping to achieve catalysis. One of the striking features of enzyme catalysis is substrate specificity. In the lock-and-key hypothesis, the enzyme is viewed as a precisely shaped lock and only the right key, the substrate, can fit and turn it. The lock-and-key combination is the enzyme–substrate complex. A crucial ingredient of the enzyme’s equipment for achieving outstanding catalysis is the ‘catalytic groups’.


2020 ◽  
pp. jbc.RA120.015050
Author(s):  
Shrenik C Mehta ◽  
Ian M Furey ◽  
Orville A Pemberton ◽  
David M Boragine ◽  
Yu Chen ◽  
...  

Serine active-site β-lactamases hydrolyze β-lactam antibiotics through formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most β-lactamases due to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared to the common TEM-1 β-lactamase. Further, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase β-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 β-lactamase.


2019 ◽  
Author(s):  
Jennifer Nill ◽  
Tina Jeoh

AbstractInterfacial enzyme reactions require formation of an enzyme-substrate complex at the surface of a heterogeneous substrate, but often multiple modes of enzyme binding and types of binding sites complicate analysis of their kinetics. Excess of heterogeneous substrate is often used as a justification to model the substrate as unchanging; but using the study of the enzymatic hydrolysis of insoluble cellulose as an example, we argue that reaction rates are dependent on evolving substrate interfacial properties. We hypothesize that the relative abundance of binding sites on cellulose where hydrolysis can occur (productive binding sites) and binding sites where hydrolysis cannot be initiated or is inhibited (non-productive binding sites) contribute to rate limitations. We show that the initial total number of productive binding sites (the productive binding capacity) determines the magnitude of the initial burst phase of cellulose hydrolysis, while productive binding site depletion explains overall hydrolysis kinetics. Furthermore, we show that irreversibly bound surface enzymes contribute to the depletion of productive binding sites. Our model shows that increasing the ratio of productive- to non-productive binding sites promotes hydrolysis, while maintaining an elevated productive binding capacity throughout conversion is key to preventing hydrolysis slowdown.


1987 ◽  
Vol 244 (3) ◽  
pp. 553-558 ◽  
Author(s):  
S Visser ◽  
C J Slangen ◽  
P J van Rooijen

The role of individual amino acid residues in the 98-102 and 111-112 regions of bovine kappa-casein in its interaction with the milk-clotting enzyme chymosin (rennin) was investigated. to this end the tryptic 98-112 fragment of kappa-casein was modified in its N- and/or C-terminal part by chemical (guanidation, ethoxyformylation, repeated Edman degradation) and enzymic (carboxypeptidase) treatments. Further, use was made of short synthetic kappa-casein analogues in which His-102 had been replaced by Pro or Lys. All peptides and their derivatives were tested comparatively at various pH values for their ability to act as chymosin substrates via specific cleavage of the peptide bond at position 105-106. The results indicate that in the alternating 98-102 sequence (His-Pro-His-Pro-His) the His as well as the Pro residues contribute to the substrate activity with no predominant role of any one of these groups. Another interaction site is formed by the Lys residue at position 111 of the substrate. A model of the enzyme-substrate complex is proposed. Herein the 103-108 fragment of the substrate, to be accommodated within the enzyme's active-site cleft, is brought into position by electrostatic binding (via His-98, His-100, His-102 and Lys-111) near the entrance of the cleft. These interactions are strongly supported by Pro residues at positions 99, 101, 109 and 110 of the substrate, which act as stabilizers of the proper conformation of the substrate in the enzyme-substrate complex.


1999 ◽  
Vol 341 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Satoru NIRASAWA ◽  
Yoshiaki NAKAJIMA ◽  
Zhen-Zhong ZHANG ◽  
Michiteru YOSHIDA ◽  
Kiyoshi HAYASHI

An aminopeptidase from Aeromonas caviae T-64 was translated as a preproprotein consisting of three domains; a signal peptide (19 amino acid residues), an N-terminal propeptide (101 residues) and a mature region (273 residues). We demonstrated that a proteinase, which was isolated from the culture filtrate of A. caviae T-64, activated the recombinant pro-aminopeptidase by removal of the majority of the propeptide. Using L-Leu-p-nitroanilide as a substrate, the processed aminopeptidase showed a large increase in kcat when compared with the unprocessed enzyme, whereas the Km value remained relatively unchanged. The similar Km values for the pro-aminopeptidase and the mature aminopeptidase indicated that the N-terminal propeptide of the pro-aminopeptidase did not influence the formation of the enzyme-substrate complex, suggesting the absence of marked conformational changes in the active domain. In contrast, the marked difference in kcat suggests a significant decrease in the energy of one or more of the transition states of the enzyme-substrate reaction coordinate. Moreover, we showed that the activity of the urea-denatured pro-aminopeptidase could be recovered by dialysis, whereas the activity of the urea-denatured mature aminopeptidase, which lacked the propeptide, could not. Further to this, the propeptide-deleted aminopeptidase formed an inclusion body in the cytoplasmic space in Escherichia coli and was not secreted at all. These results suggested that the propeptide of the pro-aminopeptidase acted as an intramolecular chaperone that was involved with the correct folding of the enzyme in vitro and was required for extracellular secretion in E. coli.


Sign in / Sign up

Export Citation Format

Share Document