scholarly journals On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

2015 ◽  
Vol 8 (9) ◽  
pp. 7663-7691 ◽  
Author(s):  
J. Y. Tang

Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state for the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ]T of v with respect the total enzyme concentration [ E ]T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ]T of v with respect to the total substrate concentration [ S ]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ∂ ln v / ∂ ln k2+ and ∂ ln v / ∂ ln [ E ]T, and persistently over-predicts ∂ ln v / ∂ ln k1+ and ∂ ln v / ∂ ln [ S ]T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k2+, ∂ ln v / ∂ ln k1+, ∂ ln v / ∂ ln [ E ]T and ∂ ln v / ∂ ln [ S ]T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.

2015 ◽  
Vol 8 (12) ◽  
pp. 3823-3835 ◽  
Author(s):  
J. Y. Tang

Abstract. The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steady state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k2+ of the reaction velocity v with respect to the maximum product genesis rate k2+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k1+ of v with respect to the intrinsic substrate affinity k1+, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [E]T of v with respect the total enzyme concentration [E]T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [S]T of v with respect to the total substrate concentration [S]T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k2+ and ∂ ln v / ∂ ln [E]T, and persistently overpredicts ∂ ln v / ∂ ln k1+ and ∂ ln v / ∂ ln [S]T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k2+, ∂ ln v / ∂ ln k1+, ∂ ln v / ∂ ln [E]T, and ∂ ln v / ∂ ln [S]T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.


1993 ◽  
Vol 294 (2) ◽  
pp. 459-464 ◽  
Author(s):  
C Garrido-del Solo ◽  
F García-Cánovas ◽  
B H Havsteen ◽  
R Varón-Castellanos

A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended.


1994 ◽  
Vol 303 (2) ◽  
pp. 435-440 ◽  
Author(s):  
C Garrido-del Solo ◽  
F García-Cánovas ◽  
B H Havsteen ◽  
E Valero ◽  
R Varón

A kinetic analysis of the Michaelis-Menten mechanism has been made for the case in which both the enzyme-substrate complex and the product are unstable or only the product is unstable, either spontaneously or as the result of the addition of a reagent. This analysis allows the derivation of equations which under conditions of limiting enzyme concentration relate the concentration of all of the species to the time. A kinetic data analysis is suggested, which leads to the evaluation of the kinetic parameters involved in the reaction. The analysis is based on the equation which describes the formation of products with time and one's experimental progress curves. We demonstrate the method numerically by computer simulation of the reaction with added experimental errors and experimentally by the use of data from the kinetic study of the action of tyrosinase on dopamine.


2017 ◽  
Vol 20 (05) ◽  
pp. 1750034 ◽  
Author(s):  
COLIN TURFUS ◽  
ALEXANDER SHUBERT

We present a new model for pricing contingent convertible (CoCo) bonds which facilitates the calculation of equity, credit and interest rate risk sensitivities. We assume a lognormal equity process and a Hull–White (normal) short rate process for the conversion intensity with a downward jump in the equity price on conversion. We are able to derive an approximate solution in closed form based on the assumption that the conversion intensity volatility is asymptotically small. The simple first-order approximation is seen to be accurate for a wide range of market conditions, although particularly for longer maturities higher order terms in the asymptotic expansion may be needed.


2021 ◽  
Author(s):  
Jana Rosenau ◽  
Isabell Louise Grothaus ◽  
Yikun Yang ◽  
Lucio Colombi Ciacchi ◽  
Soerge Kelm ◽  
...  

Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS are highly N-glycosylated, but the biological functions of the glycans remain elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structure stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. MALDI-TOF MS revealed that eight asparagine sites were glycosylated with high-mannose type N-glycans. Deglycosylation of TconTS1 led to a 5-fold decrease in substrate affinity but to the same conversion rate relative to the untreated enzyme. After deglycosylation, no changes in secondary structure elements were observed in circular dichroism experiments. Molecular dynamics simulations revealed interactions between the highly flexible N-glycans and some conserved amino acids belonging to the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and promoting enzyme/substrate complex stability. The here-observed modulation of catalytic activity via the N-glycan shield may be a structure-function relationship intrinsic of several members of the TS family.


1970 ◽  
Vol 48 (12) ◽  
pp. 1793-1802 ◽  
Author(s):  
H. P. Kasserra ◽  
K. J. Laidler

The stopped-flow technique has been used to study the pre-steady-state kinetics of the hydrolysis of N-carbobenzoxy-L-alanine-p-nitrophenyl ester catalyzed by trypsin. By working under conditions such that the enzyme concentration is much greater than that of the substrate, it has been possible to measure [Formula: see text] the rate constant for the conversion of the enzyme-substrate complex into the acyl enzyme. The pH dependence of [Formula: see text] reveals a pKb′ value of 6.9 for the conversion of complex into acyl enzyme, in agreement with deductions from steady-state investigations. The pH dependence of [Formula: see text] (equal to k−1 + k2)/k1) has also been determined. The results provide direct evidence for the existence of an enzyme-substrate complex for this reaction.The work has been done in various mixtures of water and isopropyl alcohol. The logarithms of the rate constants [Formula: see text] and [Formula: see text] vary linearly with 1/D, showing a decrease with increasing alcohol concentration; [Formula: see text] increases with alcohol concentration. The solvent results suggest that addition of alcohol affects the hydrophobic bonding in the protein and leads to unfolding of the enzyme.


AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 1721-1727
Author(s):  
Prasanth B. Nair ◽  
Andrew J. Keane ◽  
Robin S. Langley

1980 ◽  
Vol 45 (2) ◽  
pp. 427-434 ◽  
Author(s):  
Kveta Heinrichová ◽  
Rudolf Kohn

The effect of exo-D-galacturonanase from carrot on O-acetyl derivatives of pectic acid of variousacetylation degree was studied. Substitution of hydroxyl groups at C(2) and C(3) of D-galactopyranuronic acid units influences the initial rate of degradation, degree of degradation and its maximum rate, the differences being found also in the time of limit degradations of the individual O-acetyl derivatives. Value of the apparent Michaelis constant increases with increase of substitution and value of Vmax changes. O-Acetyl derivatives act as a competitive inhibitor of degradation of D-galacturonan. The extent of the inhibition effect depends on the degree of substitution. The only product of enzymic reaction is D-galactopyranuronic acid, what indicates that no degradation of the terminal substituted unit of O-acetyl derivative of pectic acid takes place. Substitution of hydroxyl groups influences the affinity of the enzyme towards the modified substrate. The results let us presume that hydroxyl groups at C(2) and C(3) of galacturonic unit of pectic acid are essential for formation of the enzyme-substrate complex.


2021 ◽  
Vol 14 ◽  
pp. 117863612110246
Author(s):  
Cheuk Yin Lai ◽  
Ka Lun Ng ◽  
Hao Wang ◽  
Chui Chi Lam ◽  
Wan Keung Raymond Wong

CenA is an endoglucanase secreted by the Gram-positive cellulolytic bacterium, Cellulomonas fimi, to the environment as a glycosylated protein. The role of glycosylation in CenA is unclear. However, it seems not crucial for functional activity and secretion since the unglycosylated counterpart, recombinant CenA (rCenA), is both bioactive and secretable in Escherichia coli. Using a systematic screening approach, we have demonstrated that rCenA is subjected to spontaneous cleavages (SC) in both the cytoplasm and culture medium of E. coli, under the influence of different environmental factors. The cleavages were found to occur in both the cellulose-binding (CellBD) and catalytic domains, with a notably higher occurring rate detected in the former than the latter. In CellBD, the cleavages were shown to occur close to potential N-linked glycosylation sites, suggesting that these sites might serve as ‘attributive tags’ for differentiating rCenA from endogenous proteins and the points of initiation of SC. It is hypothesized that glycosylation plays a crucial role in protecting CenA from SC when interacting with cellulose in the environment. Subsequent to hydrolysis, SC would ensure the dissociation of CenA from the enzyme-substrate complex. Thus, our findings may help elucidate the mechanisms of protein turnover and enzymatic cellulolysis.


1971 ◽  
Vol 246 (3) ◽  
pp. 561-568 ◽  
Author(s):  
William R. Nes ◽  
P.A. Govinda Malya ◽  
Frank B. Mallory ◽  
Karen A. Ferguson ◽  
Josephine R. Landrey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document