scholarly journals Endoplasmic reticulum oxidoreductin (ERO) provides resilience against reductive stress and hypoxic conditions by mediating luminal redox dynamics

2021 ◽  
Author(s):  
Jose Manuel Ugalde ◽  
Isabel Aller ◽  
Lika Kudrjasova ◽  
Romy Schmidt ◽  
Michelle Schloesser ◽  
...  

Oxidative protein folding in the endoplasmic reticulum (ER) depends on the coordinated action of protein disulfide isomerases and ER oxidoreductins (EROs). Strict dependence of ERO activity on molecular oxygen as the final electron acceptor implies that oxidative protein folding and other ER processes are severely compromised under hypoxia. While many key players involved in oxidative protein folding are known, our understanding of how redox homeostasis in the ER is maintained and how EROs, the Cys residues of nascent proteins, and the luminal glutathione redox buffer interact is limited. Here, we isolated viable ero1 ero2 double mutants largely deficient in ERO activity, which rendered the mutants highly sensitive to reductive stress and hypoxia. To elucidate the specific redox dynamics in the ER lumen in vivo, we expressed the glutathione redox potential (EGSH) sensor Grx1-roGFP2iL-HDEL with a midpoint potential of -240 mV in the ER of Arabidopsis plants. We found EGSH values of -241 mV in wild-type plants, which is less oxidizing than previously estimated. In the ero1 ero2 mutants, luminal EGSH was reduced further to -253 mV. Recovery to reductive ER stress, as induced by acute exposure to dithiothreitol, was delayed in ero1 ero2 mutants. The characteristic signature of EGSH dynamics in the ER lumen triggered by hypoxia was affected in the ero1 ero2 mutant reflecting a disrupted balance of reductive and oxidizing inputs, including nascent polypeptides and glutathione entry. The ER redox dynamics can now be dissected in vivo, revealing a central role of EROs as major redox integrators to promote luminal redox homeostasis.

2021 ◽  
Vol 8 (4) ◽  
pp. 77-86
Author(s):  
Huong Thi Phuong ◽  
Yuki Ishiwata-Kimata ◽  
Yuki Nishi ◽  
Norie Oguchi ◽  
Hiroshi Takagi ◽  
...  

Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1∆ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ro mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.


2012 ◽  
Vol 23 (11) ◽  
pp. 2017-2027 ◽  
Author(s):  
Lori A. Rutkevich ◽  
David B. Williams

The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.


2020 ◽  
Vol 295 (36) ◽  
pp. 12772-12785 ◽  
Author(s):  
Shingo Kanemura ◽  
Elza Firdiani Sofia ◽  
Naoya Hirai ◽  
Masaki Okumura ◽  
Hiroshi Kadokura ◽  
...  

Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2. Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.


2012 ◽  
Vol 27 (3) ◽  
pp. 965-977 ◽  
Author(s):  
Harshavardhan Kenche ◽  
Catherine J. Baty ◽  
Kokilavani Vedagiri ◽  
Steven D. Shapiro ◽  
Anna Blumental‐Perry

2012 ◽  
Vol 196 (6) ◽  
pp. 713-725 ◽  
Author(s):  
Sunghwan Kim ◽  
Dionisia P. Sideris ◽  
Carolyn S. Sevier ◽  
Chris A. Kaiser

The endoplasmic reticulum (ER) provides an environment optimized for oxidative protein folding through the action of Ero1p, which generates disulfide bonds, and Pdi1p, which receives disulfide bonds from Ero1p and transfers them to substrate proteins. Feedback regulation of Ero1p through reduction and oxidation of regulatory bonds within Ero1p is essential for maintaining the proper redox balance in the ER. In this paper, we show that Pdi1p is the key regulator of Ero1p activity. Reduced Pdi1p resulted in the activation of Ero1p by direct reduction of Ero1p regulatory bonds. Conversely, upon depletion of thiol substrates and accumulation of oxidized Pdi1p, Ero1p was inactivated by both autonomous oxidation and Pdi1p-mediated oxidation of Ero1p regulatory bonds. Pdi1p responded to the availability of free thiols and the relative levels of reduced and oxidized glutathione in the ER to control Ero1p activity and ensure that cells generate the minimum number of disulfide bonds needed for efficient oxidative protein folding.


2019 ◽  
Author(s):  
Laurent Marty ◽  
Daniela Bausewein ◽  
Christopher Müller ◽  
Sajid Ali Khan Bangash ◽  
Anna Moseler ◽  
...  

SummaryA highly negative glutathione redox potential (EGSH) is maintained in the cytosol, plastids and mitochondria of plant cells to support fundamental processes, including antioxidant defence, redox regulation and iron-sulfur cluster biogenesis. Out of two glutathione reductase (GR) proteins in Arabidopsis, GR2 is predicted to be dual-targeted to plastids and mitochondria, but its differential roles in these organelles remain unclear.We dissected the role of GR2 in organelle glutathione redox homeostasis and plant development using a combination of genetic complementation and stacked mutants, biochemical activity studies, immunogold labelling and in vivo biosensing.Our data demonstrate that GR2 is dual-targeted to plastids and mitochondria, but embryo lethality of gr2 null mutants is caused specifically in plastids. Whereas lack of mitochondrial GR2 leads to a partially oxidised glutathione pool in the matrix, the ABC transporter ATM3 and the mitochondrial thioredoxin system provide functional backup and maintain plant viability.We identify GR2 as essential in the plastid stroma, where it counters GSSG accumulation and developmental arrest. By contrast a functional triad of GR2, ATM3 and the thioredoxin system in the mitochondria provides resilience to excessive glutathione oxidation.


Sign in / Sign up

Export Citation Format

Share Document