scholarly journals LONG-TERM MONITORING OF THE EUROPEAN ROLLER (CORACIAS GARRULUS) IN UKRAINE: IS CLIMATE BEHIND THE CHANGES?

2021 ◽  
Author(s):  
Tatiana Shupova ◽  
Volodymyr Tytar

Since the 1980s there has been a long-term decline in numbers and contraction of range in Europe, including Ukraine. Our specific goals were to reconstruct the climatically suitable range of the species in Ukraine before the 1980s, gain better knowledge on its requirements, compare the past and current suitable areas, infer the regional and environmental variables that best explain its occurrence, and quantify the overall range change in the country. For these purposes we created a database consisting of 347 records of the roller made ever in Ukraine. We employed a species distribution modeling (SDM) approach to hindcast changes in the suitable range of the roller during historical times across Ukraine and to derive spatially explicit predictions of climatic suitability for the species under current climate. SDMs were created for three time intervals (before 1980, 1985-2009, 2010-2021) using corresponding climate data extracted from the TerraClim database. SDMs show a decline of suitable for rollers areas in the country from 85 to 46%. Several factors, including land cover and use, human population density and climate, that could have contributed to the decline of the species in Ukraine were considered. We suggest climate change and its speed (velocity) have been responsible for shaping the contemporary home range of the European roller. Key words: Coracias garrulus; species distribution modelling; ecological niche; climate change; velocity of climate change

2021 ◽  
Author(s):  
Tatiana Shupova ◽  
Volodymyr Tytar

Since the 1980s there has been a long-term decline in numbers and contraction of range in Europe, including Ukraine. Our specific goals were to reconstruct the climatically suitable range of the species in Ukraine before the 1980s, gain better knowledge on its requirements, compare the past and current suitable areas, infer the regional and environmental variables that best explain its occurrence, and quantify the overall range change in the country. For these purposes we created a database consisting of 347 records of the roller made ever in Ukraine. We employed a species distribution modeling (SDM) approach to hindcast changes in the suitable range of the roller during historical times across Ukraine and to derive spatially explicit predictions of climatic suitability for the species under current climate. SDMs were created for three time intervals (before 1980, 1985-2009, 2010-2021) using corresponding climate data extracted from the TerraClim database. SDMs show a decline of suitable for rollers areas in the country from 85 to 46%. Several factors, including land cover and use, human population density and climate, that could have contributed to the decline of the species in Ukraine were considered. We suggest climate change and its speed (velocity) have been responsible for shaping the contemporary home range of the European roller.


2018 ◽  
Vol 373 (1761) ◽  
pp. 20170446 ◽  
Author(s):  
Scott Jarvie ◽  
Jens-Christian Svenning

Trophic rewilding, the (re)introduction of species to promote self-regulating biodiverse ecosystems, is a future-oriented approach to ecological restoration. In the twenty-first century and beyond, human-mediated climate change looms as a major threat to global biodiversity and ecosystem function. A critical aspect in planning trophic rewilding projects is the selection of suitable sites that match the needs of the focal species under both current and future climates. Species distribution models (SDMs) are currently the main tools to derive spatially explicit predictions of environmental suitability for species, but the extent of their adoption for trophic rewilding projects has been limited. Here, we provide an overview of applications of SDMs to trophic rewilding projects, outline methodological choices and issues, and provide a synthesis and outlook. We then predict the potential distribution of 17 large-bodied taxa proposed as trophic rewilding candidates and which represent different continents and habitats. We identified widespread climatic suitability for these species in the discussed (re)introduction regions under current climates. Climatic conditions generally remain suitable in the future, although some species will experience reduced suitability in parts of these regions. We conclude that climate change is not a major barrier to trophic rewilding as currently discussed in the literature.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.


Author(s):  
Marija Milicic ◽  
Marina Jankovic ◽  
Dubravka Milic ◽  
Snezana Radenkovic ◽  
Ante Vujic

Climate change is happening. Due to a spectrum of possible conse?quences, numerous studies examine the effects of global warming on species distribution. This study examines the effects of changing climate on distribution of selected strictly protected species of hoverflies in Serbia, by using species distribution modelling. Ten species were included in the analysis. Three species were predicted to lose a part of their range across time, while for seven species the range expansion was predicted. Both in the present time and in the future, mountainous regions have the highest species richness, such as Golija, Kopaonik, and Prokletije in the western Serbia, and mountains Stara Planina, Besna Kobila, Suva Planina, and Dukat in the southeastern part of the country. However, beside climate change, there are several other factors that might influence the distribution of strictly pro?tected hoverflies in Serbia, such as intensive land use and degradation of habitats. Addition?ally, global warming also affects flowering plants that syrphids are dependent on, which could present another obstacle to their future range expansions. These results can contribute to planning future steps for the conservation of strictly protected hoverfly species.


2015 ◽  
Vol 191 ◽  
pp. 322-330 ◽  
Author(s):  
Craig M. Costion ◽  
Lalita Simpson ◽  
Petina L. Pert ◽  
Monica M. Carlsen ◽  
W. John Kress ◽  
...  

2016 ◽  
Vol 37 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Edvárd Mizsei ◽  
Bálint Üveges ◽  
Balázs Vági ◽  
Márton Szabolcs ◽  
Szabolcs Lengyel ◽  
...  

Vipera ursinii graeca is a restricted-range, endemic snake of the Pindos mountain range in the southwestern Balkans. The subspecies was previously reported from eight localities in Greece and one locality in southern Albania. We used species distribution modelling based on climate data from known localities in Greece to estimate the potential distribution of the subspecies. The model predicted suitable areas for eleven mountains in southern Albania, which we visited in ten field expeditions in four years. Based on 78 live individuals and 33 shed skins, we validated the presence of the snake on eight of the eleven mountains. Six populations (Dhëmbel, Llofiz, Griba, Shendelli, Tomorr and Trebeshinë Mountains) are reported here for the first time. Morphological characters undoubtedly supported that all individuals found at these new localities belong to V. u. graeca. Genetic analysis of mitochondrial DNA sequences also confirmed the identity of the snakes as V. u. graeca and a low number of identified haplotypes suggested low genetic variability among populations despite significant spatial isolation. All localities were subalpine-alpine calcareous meadows above 1600 m. These high montane habitats are separated by deep valleys and are threatened by overgrazing, soil erosion, and a potential increase in the elevation of the tree line due to climate change. Our surveys increased the number of known populations by 60% and the known geographical range of the subspecies by approximately 30%. Our study serves as a baseline for further ecological research and for conservation measures for one of the least known European viperid snakes.


Sign in / Sign up

Export Citation Format

Share Document