scholarly journals Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles

Author(s):  
Abdullah Muhammad Syed ◽  
Alison Ciling ◽  
Mir M. Khalid ◽  
Bharath Sreekumar ◽  
G. Renuka Kumar ◽  
...  

The Omicron SARS-CoV-2 virus contains extensive sequence changes relative to the earlier arising B.1, B.1.1 and Delta SARS-CoV-2 variants that have unknown effects on viral infectivity and response to existing vaccines. Using SARS-CoV-2 virus-like particles (SC2-VLPs), we examined mutations in all four structural proteins and found that Omicron showed increased infectivity relative to B.1, B.1.1 and similar to Delta, a property conferred by S and N protein mutations. Thirty-eight antisera samples from individuals vaccinated with tozinameran (Pfizer/BioNTech), elasomeran (Moderna), Johnson & Johnson vaccines and convalescent sera from unvaccinated COVID-19 survivors had moderately to dramatically reduced efficacy to prevent cell transduction by VLPs containing the Omicron mutations. The Pfizer/BioNTech and Moderna vaccine antisera showed strong neutralizing activity against VLPs possessing the ancestral spike protein (B.1, B.1.1), with 3-fold reduced efficacy against Delta and 15-fold lower neutralization against Omicron VLPs. Johnson & Johnson antisera showed minimal neutralization of any of the VLPs tested. Furthermore, the monoclonal antibody therapeutics Casirivimab and Imdevimab had robust neutralization activity against B.1, B.1.1 or Delta VLPs but no detectable neutralization of Omicron VLPs. Our results suggest that Omicron is at least as efficient at assembly and cell entry as Delta, and the antibody response triggered by existing vaccines or previous infection, at least prior to boost, will have limited ability to neutralize Omicron. In addition, some currently available monoclonal antibodies will not be useful in treating Omicron-infected patients.

2005 ◽  
Vol 79 (22) ◽  
pp. 13848-13855 ◽  
Author(s):  
Ping-Kun Hsieh ◽  
Shin C. Chang ◽  
Chu-Chun Huang ◽  
Ting-Ting Lee ◽  
Ching-Wen Hsiao ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm3. Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3′ noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.


2021 ◽  
Author(s):  
Lukasz Suprewicz ◽  
Maxx Swoger ◽  
Sarthak Gupta ◽  
Ewelina Piktel ◽  
Fitzroy F Byfield ◽  
...  

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 virus-like particles coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cell lines. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.


2021 ◽  
Vol 21 ◽  
Author(s):  
Mohammed Elimam Ahamed Mohammed

: The proteins of coronavirus are classified to nonstructural, structural, and accessory. There are 16 nonstructural viral proteins beside their precursors (1a and 1ab polyproteins). The nonstructural proteins are named as nsp1 to nsp16 and they act as enzymes, coenzymes, and binding proteins to facilitate the replication, transcription, and translation of the virus. The structural proteins are bound to the RNA in the nucleocapsid (N- protein) or to the lipid bilayer membrane of the viral envelope. The lipid bilayer proteins include the membrane protein (M), envelope protein (E), and spike protein (S). Beside their role as structural proteins, they are essential for the host cells binding and invasion. The SARS-CoV-2 contains six accessory proteins which participates in the viral replication, assembly and virus- host interactions. The SARS-CoV-2 accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10. The functions of the SARS-CoV-2 are not well known, while the functions of their corresponding proteins in SARS-CoV are either well known or poorly studied. Recently, the Oxford University and Pfizer and BioNTech made SARS-CoV-2 vaccines through targeting the spike protein gene. The US Food and Drug Administration (FDA) and the health authorities of the United Kingdom approved and started vaccination using the Pfizer and BioNTech mRNA vaccine. Also, The FDA of USA approved the treatment of COVID-19 using two monoclonal antibodies produced by Regeneron pharmaceuticals to target the spike protein. The SARS-CoV-2 proteins can be used for the diagnosis, as drug targets and in vaccination trials for COVID-19. For future COVID-19 research, more efforts should be done to elaborate the functions and structure of the SARS-CoV-2 proteins so as to use them as targets for COVID-19 drug and vaccines. Special attention should be drawn to extensive research on the SARS-CoV-2 nsp3, orf8, and orf10.


2021 ◽  
Vol 9 ◽  
Author(s):  
Otto Laub ◽  
Georg Leipold ◽  
Antoaneta A. Toncheva ◽  
David Peterhoff ◽  
Sebastian Einhauser ◽  
...  

Background: Children and youth are affected rather mildly in the acute phase of COVID-19 and thus, SARS-CoV-2 infection infection may easily be overlooked. In the light of current discussions on the vaccinations of children it seems necessary to better identify children who are immune against SARS-CoV-2 due to a previous infection and to better understand COVID-19 related immune reactions in children.Methods: In a cross-sectional design, children aged 1–17 were recruited through primary care pediatricians for the study (a) randomly, if they had an appointment for a regular health check-up or (b) if parents and children volunteered and actively wanted to participate in the study. Symptoms were recorded and two antibody tests were performed in parallel directed against S (in house test) and N (Roche Elecsys) viral proteins. In children with antibody response in either test, neutralization activity was determined.Results: We identified antibodies against SARS-CoV-2 in 162 of 2,832 eligible children (5.7%) between end of May and end of July 2020 in three, in part strongly affected regions of Bavaria in the first wave of the pandemic. Approximately 60% of antibody positive children (n = 97) showed high levels (>97th percentile) of antibodies against N-protein, and for the S-protein, similar results were found. Sufficient neutralizing activity was detected for only 135 antibody positive children (86%), irrespective of age and sex. Initial COVID-19 symptoms were unspecific in children except for the loss of smell and taste and unrelated to antibody responses or neutralization capacity. Approximately 30% of PCR positive children did not show seroconversion in our small subsample in which PCR tests were performed.Conclusions: Symptoms of SARS-CoV-2 infections are unspecific in children and antibody responses show a dichotomous structure with strong responses in many and no detectable antibodies in PCR positive children and missing neutralization activity in a relevant proportion of the young population.


2021 ◽  
Vol 15 ◽  
pp. 117793222110258
Author(s):  
Ritesh Gorkhali ◽  
Prashanna Koirala ◽  
Sadikshya Rijal ◽  
Ashmita Mainali ◽  
Adesh Baral ◽  
...  

SARS-CoV-2 virus, the causative agent of COVID-19 pandemic, has a genomic organization consisting of 16 nonstructural proteins (nsps), 4 structural proteins, and 9 accessory proteins. Relative of SARS-CoV-2, SARS-CoV, has genomic organization, which is very similar. In this article, the function and structure of the proteins of SARS-CoV-2 and SARS-CoV are described in great detail. The nsps are expressed as a single or two polyproteins, which are then cleaved into individual proteins using two proteases of the virus, a chymotrypsin-like protease and a papain-like protease. The released proteins serve as centers of virus replication and transcription. Some of these nsps modulate the host’s translation and immune systems, while others help the virus evade the host immune system. Some of the nsps help form replication-transcription complex at double-membrane vesicles. Others, including one RNA-dependent RNA polymerase and one exonuclease, help in the polymerization of newly synthesized RNA of the virus and help minimize the mutation rate by proofreading. After synthesis of the viral RNA, it gets capped. The capping consists of adding GMP and a methylation mark, called cap 0 and additionally adding a methyl group to the terminal ribose called cap1. Capping is accomplished with the help of a helicase, which also helps remove a phosphate, two methyltransferases, and a scaffolding factor. Among the structural proteins, S protein forms the receptor of the virus, which latches on the angiotensin-converting enzyme 2 receptor of the host and N protein binds and protects the genomic RNA of the virus. The accessory proteins found in these viruses are small proteins with immune modulatory roles. Besides functions of these proteins, solved X-ray and cryogenic electron microscopy structures related to the function of the proteins along with comparisons to other coronavirus homologs have been described in the article. Finally, the rate of mutation of SARS-CoV-2 residues of the proteome during the 2020 pandemic has been described. Some proteins are mutated more often than other proteins, but the significance of these mutation rates is not fully understood.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 239
Author(s):  
Christopher A. Gonelli ◽  
Hannah A. D. King ◽  
Charlene Mackenzie ◽  
Secondo Sonza ◽  
Rob J. Center ◽  
...  

An optimal prophylactic vaccine to prevent human immunodeficiency virus (HIV-1) transmission should elicit protective antibody responses against the HIV-1 envelope glycoprotein (Env). Replication-incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present virion-associated Env with a native-like structure during vaccination that closely resembles that encountered on infectious virus. Here, we optimized the incorporation of Env into previously designed mature-form VLPs (mVLPs) and assessed their immunogenicity in mice. The incorporation of Env into mVLPs was increased by replacing the Env transmembrane and cytoplasmic tail domains with those of influenza haemagglutinin (HA-TMCT). Furthermore, Env was stabilized on the VLP surface by introducing an interchain disulfide and proline substitution (SOSIP) mutations typically employed to stabilize soluble Env trimers. The resulting mVLPs efficiently presented neutralizing antibody epitopes while minimizing exposure of non-neutralizing antibody sites. Vaccination of mice with mVLPs elicited a broader range of Env-specific antibody isotypes than Env presented on immature VLPs or extracellular vesicles. The mVLPs bearing HA-TMCT-modified Env consistently induced anti-Env antibody responses that mediated modest neutralization activity. These mVLPs are potentially useful immunogens for eliciting neutralizing antibody responses that target native Env epitopes on infectious HIV-1 virions.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ge Yang ◽  
Ziyue Li ◽  
Irfan Mohammed ◽  
Liping Zhao ◽  
Wei Wei ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 821
Author(s):  
Rohitash Yadav ◽  
Jitendra Kumar Chaudhary ◽  
Neeraj Jain ◽  
Pankaj Kumar Chaudhary ◽  
Supriya Khanra ◽  
...  

Coronavirus belongs to the family of Coronaviridae, comprising single-stranded, positive-sense RNA genome (+ ssRNA) of around 26 to 32 kilobases, and has been known to cause infection to a myriad of mammalian hosts, such as humans, cats, bats, civets, dogs, and camels with varied consequences in terms of death and debilitation. Strikingly, novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and found to be the causative agent of coronavirus disease-19 (COVID-19), shows 88% of sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79% with SARS-CoV and 50% with MERS-CoV, respectively. Despite key amino acid residual variability, there is an incredible structural similarity between the receptor binding domain (RBD) of spike protein (S) of SARS-CoV-2 and SARS-CoV. During infection, spike protein of SARS-CoV-2 compared to SARS-CoV displays 10–20 times greater affinity for its cognate host cell receptor, angiotensin-converting enzyme 2 (ACE2), leading proteolytic cleavage of S protein by transmembrane protease serine 2 (TMPRSS2). Following cellular entry, the ORF-1a and ORF-1ab, located downstream to 5′ end of + ssRNA genome, undergo translation, thereby forming two large polyproteins, pp1a and pp1ab. These polyproteins, following protease-induced cleavage and molecular assembly, form functional viral RNA polymerase, also referred to as replicase. Thereafter, uninterrupted orchestrated replication-transcription molecular events lead to the synthesis of multiple nested sets of subgenomic mRNAs (sgRNAs), which are finally translated to several structural and accessory proteins participating in structure formation and various molecular functions of virus, respectively. These multiple structural proteins assemble and encapsulate genomic RNA (gRNA), resulting in numerous viral progenies, which eventually exit the host cell, and spread infection to rest of the body. In this review, we primarily focus on genomic organization, structural and non-structural protein components, and potential prospective molecular targets for development of therapeutic drugs, convalescent plasm therapy, and a myriad of potential vaccines to tackle SARS-CoV-2 infection.


2021 ◽  
Author(s):  
F Javier Ibarrondo ◽  
Christian Hofmann ◽  
Ayub Ali ◽  
Paul Ayoub ◽  
Donald B Kohn ◽  
...  

SARS-CoV-2 continues to evolve in humans. Spike protein mutations increase transmission and potentially evade antibodies raised against the original sequence used in current vaccines. Our evaluation of serum neutralizing activity in both persons soon after SARS-CoV-2 infection (in April 2020 or earlier) or vaccination without prior infection confirmed that common spike mutations can reduce antibody antiviral activity. However, when the persons with prior infection were subsequently vaccinated, their antibodies attained an apparent biologic ceiling of neutralizing potency against all tested variants, equivalent to the original spike sequence. These findings indicate that additional antigenic exposure further improves antibody efficacy against variants.


Sign in / Sign up

Export Citation Format

Share Document