scholarly journals DEAD-box RNA Helicases Act as Nucleotide Exchange Factors for Casein Kinase 2

2021 ◽  
Author(s):  
Edoardo Fatti ◽  
Alexander Hirth ◽  
Andrea Svorinic ◽  
Matthias Guenther ◽  
Cristina-Maria Cruciat ◽  
...  

DDX RNA helicases promote RNA processing but DDX3X is also known to activate casein kinase 1 ϵ (CK1ϵ). Here we show that not only is protein kinase stimulation a latent property of other DDX proteins towards CK1ϵ, but that this extends to casein kinase 2 (CK2α2) as well. CK2α2 enzymatic activity is stimulated by a variety of DDX proteins and we identify DDX1/24/41/54 as physiological activators required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X reveals that CK1 and CK2 kinase stimulation engages its RNA binding- but not catalytic motifs. Mathematical modelling of enzyme kinetics and stopped-flow spectroscopy converge that DDX proteins function as nucleotide exchange factor towards CK2α2 that reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as a new principle in kinase regulation and an evolved function of DDX proteins.

1982 ◽  
Vol 208 (1) ◽  
pp. 141-146 ◽  
Author(s):  
B Cummings ◽  
M R Kaser ◽  
G Wiggins ◽  
M G Ord ◽  
L A Stocken

1. Cyclic AMP-independent casein kinase 1 in liver cytoplasm and nuclei was inhibited by Be2+ in vitro (Ki 2.5 microM and 29 microM respectively). Casein kinase 2 (phosvitin kinase) and cyclic AMP-dependent protein kinase were unaffected. 2. The inhibition of casein kinase 1 by Be2+ was competitive with respect to the protein substrate; at non-saturating concentrations of casein, inhibition was non-competitive with respect to ATP. 3. In rats given LD50 doses of Be2+ 24 h before death, the activities of cytoplasmic and nuclear casein kinase 1 in livers from partially hepatectomized animals were diminished approx. 50%; with intact rats, nuclear casein kinase 1 was inhibited at concentrations of casein less than the Km.


1999 ◽  
Vol 73 (10) ◽  
pp. 8384-8392 ◽  
Author(s):  
Lesley C. Dupuy ◽  
Sean Dobson ◽  
Vira Bitko ◽  
Sailen Barik

ABSTRACT The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser232 in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser232 was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser215. In vitro, P protein could be phosphorylated by purified CK1 at Ser215 but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser215, Ser232, and Ser237 were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Sawsan Napthine ◽  
Chris H. Hill ◽  
Holly C. M. Nugent ◽  
Ian Brierley

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


1989 ◽  
Vol 9 (11) ◽  
pp. 5034-5044
Author(s):  
J L Celenza ◽  
M Carlson

The SNF1 gene of Saccharomyces cerevisiae encodes a protein-serine/threonine kinase that is required for derepression of gene expression in response to glucose limitation. We present evidence that the protein kinase activity is essential for SNF1 function: substitution of Arg for Lys in the putative ATP-binding site results in a mutant phenotype. A polyhistidine tract near the N terminus was found to be dispensable. Deletion of the large region C terminal to the kinase domain only partially impaired SNF1 function, causing expression of invertase to be somewhat reduced but still glucose repressible. The function of the SNF4 gene, another component of the regulatory system, was required for maximal in vitro activity of the SNF1 protein kinase. Increased SNF1 gene dosage partially alleviated the requirement for SNF4. C-terminal deletions of SNF1 also reduced dependence on SNF4. Our findings suggest that SNF4 acts as a positive effector of the kinase but does not serve a regulatory function in signaling glucose availability.


1993 ◽  
Vol 13 (5) ◽  
pp. 2870-2881 ◽  
Author(s):  
L C Robinson ◽  
M M Menold ◽  
S Garrett ◽  
M R Culbertson

Casein kinase I is an acidotropic protein kinase class that is widely distributed among eukaryotic cell types. In the yeast Saccharomyces cerevisiae, the casein kinase I isoform encoded by the gene pair YCK1 and YCK2 is a 60- to 62-kDa membrane-associated form. The Yck proteins perform functions essential for growth and division; either alone supports growth, but loss of function of both is lethal. We report here that casein kinase I-like activity is associated with a soluble Yck2-beta-galactosidase fusion protein in vitro and that thermolabile protein kinase activity is exhibited by a protein encoded by fusion of a temperature-sensitive yck2 allele with lacZ. Cells carrying the yck2-2ts allele arrest at restrictive temperature with multiple, elongated buds containing multiple nuclei. This phenotype suggests that the essential functions of the Yck proteins include roles in bud morphogenesis, possibly in control of cell growth polarity, and in cytokinesis or cell separation. Further, a genetic relationship between the yck2ts allele and deletion of CDC55 indicates that the function of Yck phosphorylation may be related to that of protein phosphatase 2A activity.


Biochemistry ◽  
1992 ◽  
Vol 31 (25) ◽  
pp. 5893-5897 ◽  
Author(s):  
John W. Perich ◽  
Flavio Meggio ◽  
Eric C. Reynolds ◽  
Oriano Marin ◽  
Lorenzo A. Pinna

Sign in / Sign up

Export Citation Format

Share Document