scholarly journals An enzyme-based system for the extraction of small extracellular vesicles from plants

2021 ◽  
Author(s):  
Kewei Zhao ◽  
ge sun ◽  
qing zhao ◽  
guilong liu ◽  
manlin xie ◽  
...  

Plant-derived nanovesicles (NVs) and extracellular vesicles (EVs) are considered to be the next generation of nanocarrier platforms for biotherapeutics and drug delivery. However, EVs exist not only in the extracellular space, but also within the cell wall. Due to the limitation of isolation methods, the extraction efficiency is low, resulting in the waste of a large number of plants, especially rare and expensive medicinal plants.There are few studies comparing EVs and NVs. To overcome these challenges, we proposed and validated a novel method for the isolation of plant EVs by degrading the plant cell wall with enzymes to release the EVs in the cell wall, making it easier for EVs to break the cell wall barrier and be collected. We extracted EVs from the roots of Morinda officinalis by enzymatic degradation(MOEVs) and nanoparticles by grinding method (MONVs) as a comparison group. The results showed smaller diameter and higher yield of MOEVs.Both MOEVs and MONVs were readily absorbed by endothelial cells without cytotoxicity and promoted the expression of miR-155. The difference is that the promotion of miR-155 by MOEVs is dose-effective. More importantly, MOEVs and MONVs are naturally characterized by bone enrichment. These results support that EVs in plants can be efficiently extracted by enzymatic cell wall digestion and also confirm the potential of MOEVs as therapeutic agents and drug carriers.

2014 ◽  
Vol 55 ◽  
pp. 63-69 ◽  
Author(s):  
Mads A.T. Hansen ◽  
Louise I. Ahl ◽  
Henriette L. Pedersen ◽  
Bjørge Westereng ◽  
William G.T. Willats ◽  
...  

mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
Sarah Moraïs ◽  
Yoav Barak ◽  
Yitzhak Hadar ◽  
David B. Wilson ◽  
Yuval Shoham ◽  
...  

ABSTRACTIn nature, the complex composition and structure of the plant cell wall pose a barrier to enzymatic degradation. Nevertheless, some anaerobic bacteria have evolved for this purpose an intriguing, highly efficient multienzyme complex, the cellulosome, which contains numerous cellulases and hemicellulases. The rod-like cellulose component of the plant cell wall is embedded in a colloidal blend of hemicelluloses, a major component of which is xylan. In order to enhance enzymatic degradation of the xylan component of a natural complex substrate (wheat straw) and to study the synergistic action among different xylanases, we have employed a variation of the designer cellulosome approach by fabricating a tetravalent complex that includes the three endoxylanases ofThermobifida fusca(Xyn10A, Xyn10B, and Xyn11A) and an Xyl43A β-xylosidase from the same bacterium. Here, we describe the conversion of Xyn10A and Xyl43A to the cellulosomal mode. The incorporation of the Xyl43A enzyme together with the three endoxylanases into a common designer cellulosome served to enhance the level of reducing sugars produced during wheat straw degradation. The enhanced synergistic action of the four xylanases reflected their immediate juxtaposition in the complex, and these tetravalent xylanolytic designer cellulosomes succeeded in degrading significant (~25%) levels of the total xylan component of the wheat straw substrate. The results suggest that the incorporation of xylanases into cellulosome complexes is advantageous for efficient decomposition of recalcitrant cellulosic substrates—a distinction previously reserved for cellulose-degrading enzymes.IMPORTANCEXylanases are important enzymes for our society, due to their variety of industrial applications. Together with cellulases and other glycoside hydrolases, xylanases may also provide cost-effective conversion of plant-derived cellulosic biomass into soluble sugars en route to biofuels as an alternative to fossil fuels. Xylanases are commonly found in multienzyme cellulosome complexes, produced by anaerobic bacteria, which are considered to be among the most efficient systems for degradation of cellulosic biomass. Using a designer cellulosome approach, we have incorporated the entire xylanolytic system of the bacteriumThermobifida fuscainto defined artificial cellulosome complexes. The combined action of these designer cellulosomes versus that of the wild-type free xylanase system was then compared. Our data demonstrated that xylanolytic designer cellulosomes displayed enhanced synergistic activities on a natural recalcitrant wheat straw substrate and could thus serve in the development of advanced systems for improved degradation of lignocellulosic material.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document