Influence of Cell Wall Composition on the Fossilisation of Bacteria and the Implications for the Search for Early Life Forms

1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.

1991 ◽  
Vol 54 (5) ◽  
pp. 360-365 ◽  
Author(s):  
S.J. KNABEL ◽  
H.W. WALKER ◽  
P.A. HARTMAN

A simple well-plate technique was utilized to determine the effect of various metals on the growth of microorganisms in media containing different polyphosphates. Aspergillus flavus and four gram-positive bacteria were completely inhibited by media containing 1% of various alkaline polyphosphates, whereas four gram-negative bacteria were not. Significant differences were observed between the type of polyphosphate added, the type of metal added, and the species of gram-positive bacterium inhibited. The addition of Mg2+ stimulated growth of A. flavus and Bacillus cereus in the presence of tetrasodium pyrophosphate, whereas Mn2+ permitted growth of A. flavus and Staphylococcus aureus in the presence of sodium hexametaphosphate. Iron supplementation allowed the growth of S. aureus and Listeria monocytogenes on media containing 1 % tetrasodium pyrophosphate. A method for determining the amount of calcium and magnesium in water was modified to detect free Mg2+ by replacing EDTA with phosphate. The addition of free Mg2+, but not Mg2+ chelated by tetrasodium pyrophosphate, permitted the growth of B. cereus on a medium containing tetrasodium pyrophosphate. It is speculated that polyphosphates specifically inhibited A. flavus and gram-positive bacteria by removing essential metals from cation-binding sites located within their cell walls.


2021 ◽  
Vol 118 (11) ◽  
pp. e2100137118
Author(s):  
David A. Dik ◽  
Nan Zhang ◽  
Emily J. Sturgell ◽  
Brittany B. Sanchez ◽  
Jason S. Chen ◽  
...  

Gram-positive bacteria assemble a multilayered cell wall that provides tensile strength to the cell. The cell wall is composed of glycan strands cross-linked by nonribosomally synthesized peptide stems. Herein, we modify the peptide stems of the Gram-positive bacterium Bacillus subtilis with noncanonical electrophilic d-amino acids, which when in proximity to adjacent stem peptides form novel covalent 5,3-cross-links. Approximately 20% of canonical cell-wall cross-links can be replaced with synthetic cross-links. While a low level of synthetic cross-link formation does not affect B. subtilis growth and phenotype, at higher levels cell growth is perturbed and bacteria elongate. A comparison of the accumulation of synthetic cross-links over time in Gram-negative and Gram-positive bacteria highlights key differences between them. The ability to perturb cell-wall architecture with synthetic building blocks provides a novel approach to studying the adaptability, elasticity, and porosity of bacterial cell walls.


2013 ◽  
Vol 10 (80) ◽  
pp. 20120892 ◽  
Author(s):  
Gabriel J. Mitchell ◽  
Kurt Wiesenfeld ◽  
Daniel C. Nelson ◽  
Joshua S. Weitz

Gram-positive bacteria can transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here, we develop and analyse a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range of 15–24 nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insights into the range of cell wall hole sizes compatible with bacterial homeostasis.


2006 ◽  
Vol 188 (11) ◽  
pp. 3972-3982 ◽  
Author(s):  
Stephen Mc Grath ◽  
Horst Neve ◽  
Jos F. M. L. Seegers ◽  
Robyn Eijlander ◽  
Christina S. Vegge ◽  
...  

ABSTRACT Bacteriophages of the Siphoviridae family utilize a long noncontractile tail to recognize, adsorb to, and inject DNA into their bacterial host. The tail anatomy of the archetypal Siphoviridae λ has been well studied, in contrast to phages infecting gram-positive bacteria. This report outlines a detailed anatomical description of a typical member of the Siphoviridae infecting a gram-positive bacterium. The tail superstructure of the lactococcal phage Tuc2009 was investigated using N-terminal protein sequencing, Western blotting, and immunogold transmission electron microscopy, allowing a tangible path to be followed from gene sequence through encoded protein to specific architectural structures on the Tuc2009 virion. This phage displays a striking parity with λ with respect to tail structure, which reenforced a model proposed for Tuc2009 tail architecture. Furthermore, comparisons with λ and other lactococcal phages allowed the specification of a number of genetic submodules likely to encode specific tail structures.


1998 ◽  
Vol 64 (8) ◽  
pp. 3059-3062 ◽  
Author(s):  
Elena Bidnenko ◽  
Carine Mercier ◽  
Josselyne Tremblay ◽  
Patrick Tailliez ◽  
Saulius Kulakauskas

ABSTRACT Fluorescent in situ hybridization (FISH) is now a widely used method for identification of bacteria at the single-cell level. With gram-positive bacteria, the thick peptidoglycan layer of a cell wall presents a barrier for entry of horseradish peroxidase (HRP)-labeled probes. Therefore, such probes do not give any signal in FISH unless cells are first treated with enzymes which hydrolyze the peptidoglycan. We explored this feature of FISH to detect cells which have undergone permeabilization due to expression of autolytic enzymes. Our results indicate that FISH performed with HRP-labeled probes provides a sensitive method to estimate the states of cell walls of individual gram-positive bacteria.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsukasa Tominari ◽  
Ayumi Sanada ◽  
Ryota Ichimaru ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

AbstractPeriodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-μCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


2004 ◽  
Vol 23 (6) ◽  
pp. 627-630 ◽  
Author(s):  
Mercedes Berlanga ◽  
M.Teresa Montero ◽  
Jordi Hernández-Borrell ◽  
Miquel Viñas

1971 ◽  
Vol 246 (6) ◽  
pp. 1820-1827 ◽  
Author(s):  
John Mauck ◽  
Lawrence Chan ◽  
Luis Glaser

Sign in / Sign up

Export Citation Format

Share Document