designer cellulosome
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Julie Vanderstraeten ◽  
Maria João Maurício da Fonseca ◽  
Philippe De Groote ◽  
Dennis Grimon ◽  
Hans Gerstmans ◽  
...  

Abstract Background: Designer cellulosomes are self-assembled chimeric enzyme complexes that can be used to improve lignocellulosic biomass degradation. They are composed of a synthetic multimodular backbone protein, termed the scaffoldin, and a range of different chimeric docking enzymes that degrade polysaccharides. Over the years, several functional designer cellulosomes have been constructed. Since many parameters influence the efficiency of these multi-enzyme complexes, there is a need to optimise designer cellulosome architecture by testing combinatorial arrangements of docking enzyme and scaffoldin variants. However, the modular cloning procedures are tedious and cumbersome. Results: VersaTile is a combinatorial DNA assembly method, allowing the rapid construction and thus comparison of a range of modular proteins. Here, we present the extension of the VersaTile platform to facilitate the construction of designer cellulosomes. We have constructed a tile repository, composed of dockerins, cohesins, linkers, tags and enzymatically active modules. The developed toolbox allows us to efficiently create and optimise designer cellulosomes at an unprecedented speed. As a proof of concept, a trivalent designer cellulosome able to degrade the specific hemicellulose substrate, galactomannan, was constructed and optimised. The main factors influencing cellulosome efficiency were found to be the selected dockerins and linkers and the docking enzyme ratio on the scaffoldin. The optimised designer cellulosome was able to hydrolyse the galactomannan polysaccharide and release mannose and galactose monomers. Conclusion: We have eliminated one of the main technical hurdles in the designer cellulosome field and anticipate the VersaTile platform to be a starting point in the development of more elaborate multi-enzyme complexes.


Author(s):  
Pavel Dvořák ◽  
Edward A. Bayer ◽  
Víctor de Lorenzo

AbstractThe bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as waste lignocellulose or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to meet this challenge by adopting a recombinant cellulosome strategy for this attractive host. Here, we report an essential step in this endeavor – a display of designer enzyme-anchoring protein “scaffoldins”, encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and substantial differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric β-glucosidase and fluorescent proteins. Our results highlight the importance of cell surface engineering for display of recombinant proteins in Gram-negative bacteria and pave the way towards designer cellulosome strategies, tailored for P. putida.


FEBS Journal ◽  
2020 ◽  
Vol 287 (20) ◽  
pp. 4370-4388
Author(s):  
Amaranta Kahn ◽  
Sarah Moraïs ◽  
Daehwan Chung ◽  
Nicholas S. Sarai ◽  
Neal N. Hengge ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Amaranta Kahn ◽  
Sarah Moraïs ◽  
Anastasia P. Galanopoulou ◽  
Daehwan Chung ◽  
Nicholas S. Sarai ◽  
...  
Keyword(s):  

2017 ◽  
Vol 12 (10) ◽  
pp. 1700205 ◽  
Author(s):  
Eva Setter‐Lamed ◽  
Sarah Moraïs ◽  
Johanna Stern ◽  
Raphael Lamed ◽  
Edward A. Bayer

2017 ◽  
Vol 117 ◽  
pp. 147-155 ◽  
Author(s):  
Chia-Chi Lin ◽  
Cally Joe San Yap ◽  
Shu-Chen Kan ◽  
Nai-Chi Hsueh ◽  
Liang-Yu Yang ◽  
...  

2016 ◽  
Vol 113 (39) ◽  
pp. 10854-10859 ◽  
Author(s):  
Lital Davidi ◽  
Sarah Moraïs ◽  
Lior Artzi ◽  
Doriv Knop ◽  
Yitzhak Hadar ◽  
...  

Efficient breakdown of lignocellulose polymers into simple molecules is a key technological bottleneck limiting the production of plant-derived biofuels and chemicals. In nature, plant biomass degradation is achieved by the action of a wide range of microbial enzymes. In aerobic microorganisms, these enzymes are secreted as discrete elements in contrast to certain anaerobic bacteria, where they are assembled into large multienzyme complexes termed cellulosomes. These complexes allow for very efficient hydrolysis of cellulose and hemicellulose due to the spatial proximity of synergistically acting enzymes and to the limited diffusion of the enzymes and their products. Recently, designer cellulosomes have been developed to incorporate foreign enzymatic activities in cellulosomes so as to enhance lignocellulose hydrolysis further. In this study, we complemented a cellulosome active on cellulose and hemicellulose by addition of an enzyme active on lignin. To do so, we designed a dockerin-fused variant of a recently characterized laccase from the aerobic bacteriumThermobifida fusca. The resultant chimera exhibited activity levels similar to the wild-type enzyme and properly integrated into the designer cellulosome. The resulting complex yielded a twofold increase in the amount of reducing sugars released from wheat straw compared with the same system lacking the laccase. The unorthodox use of aerobic enzymes in designer cellulosome machinery effects simultaneous degradation of the three major components of the plant cell wall (cellulose, hemicellulose, and lignin), paving the way for more efficient lignocellulose conversion into soluble sugars en route to alternative fuels production.


2016 ◽  
Vol 33 ◽  
pp. S68
Author(s):  
Sung Ok Han ◽  
Jeong Eun Hyeon ◽  
Seung Kyou You
Keyword(s):  

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Johanna Stern ◽  
Sarah Moraïs ◽  
Raphael Lamed ◽  
Edward A. Bayer

ABSTRACTDesigner cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities—the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes—4 xylanases and 4 cellulases—thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes.IMPORTANCEPlant cell wall residues represent a major source of renewable biomass for the production of biofuels such as ethanol via breakdown to soluble sugars. The natural microbial degradation process, however, is inefficient for achieving cost-effective processes in the conversion of plant-derived biomass to biofuels, either from dedicated crops or human-generated cellulosic wastes. The accumulation of the latter is considered a major environmental pollutant. The development of designer cellulosome nanodevices for enhanced plant cell wall degradation thus has major impacts in the fields of environmental pollution, bioenergy production, and biotechnology in general. The findings reported in this article comprise a true breakthrough in our capacity to produce extended designer cellulosomes via synthetic biology means, thus enabling the assembly of higher-order complexes that can supersede the number of enzymes included in a single multienzyme complex.


2013 ◽  
Vol 6 (1) ◽  
pp. 182 ◽  
Author(s):  
Yael Vazana ◽  
Yoav Barak ◽  
Tamar Unger ◽  
Yoav Peleg ◽  
Melina Shamshoum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document