scholarly journals Engineered ACE2 counteracts vaccine-evading SARS-CoV-2 Omicron variant

2021 ◽  
Author(s):  
Nariko Ikemura ◽  
Shunta Taminishi ◽  
Tohru Inaba ◽  
Takao Arimori ◽  
Daisuke Motooka ◽  
...  

The novel SARS-CoV-2 variant, Omicron (B.1.1.529) contains an unusually high number of mutations (>30) in the spike protein, raising concerns of escape from vaccines, convalescent sera and therapeutic drugs. Here we analyze the alteration of neutralizing titer with Omicron pseudovirus. Sera of 3 months after double BNT162b2 vaccination exhibit approximately 18-fold lower neutralization titers against Omicron. Convalescent sera from Alpha and Delta patients allow similar levels of breakthrough by Omicron. However, some Delta patients have relatively preserved neutralization efficacy, comparable to 3-month double BNT162b2 vaccination. Domain-wise analysis using chimeric spike revealed that this efficient evasion was, at least in part, caused by multiple mutations in the N-terminal domain. Omicron escapes the therapeutic cocktail of imdevimab and casirivimab, whereas sotrovimab, which targets a conserved region to avoid viral mutation, remains effective against Omicron. The ACE2 decoy is another virus-neutralizing drug modality that is free, at least in theory, from mutational escape. Deep mutational analysis demonstrated that, indeed, the engineered ACE2 overcomes every single-residue mutation in the receptor-binding domain, similar to immunized sera. Like previous SARS-CoV-2 variants, Omicron and some other sarbecoviruses showed high sensitivity against engineered ACE2, confirming the therapeutic value against diverse variants, including those that are yet to emerge.

COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 288-302
Author(s):  
Fernando Bergasa-Caceres ◽  
Herschel A. Rabitz

In recent work, we proposed that effective therapeutic drugs aimed at treating the SARS-CoV-2 infection could be developed based on interdicting in the early steps of the folding pathway of key viral proteins, including the receptor binding domain (RBD) of the spike protein. In order to provide for a drug target on the protein, the earliest contact-formation event along the dominant folding pathway of the RBD spike protein was predicted employing the Sequential Collapse Model (SCM). The segments involved in the predicted earliest contact were suggested to provide optimal folding interdiction target regions (FITRs) for potential therapeutic drugs, with a focus on folding interdicting peptides (FIPs). In this paper, we extend our analysis to include 13 known single mutations of the RBD spike protein as well as the triple mutation B1.351 and the recent double mutation B1.617.2. The results show that the location of the FITR does not change in any of the 15 studied mutations, providing for a mutation-resistant drug design strategy for the RBD-spike protein.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice Massacci ◽  
Eleonora Sperandio ◽  
Lorenzo D’Ambrosio ◽  
Mariano Maffei ◽  
Fabio Palombo ◽  
...  

Abstract Background Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity. Methods Here, we present an open-source bioinformatic protocol, and a web portal focused on SARS-CoV-2 single mutations and minimal consensus sequence building as a companion vaccine design tool. Furthermore, we provide immunogenomic analyses to understand the impact of the most frequent RBD variations. Results Results on the whole GISAID sequence dataset at the time of the writing (October 2020) reveals an emerging mutation, S477N, located on the central part of the Spike protein Receptor Binding Domain, the Receptor Binding Motif. Immunogenomic analyses revealed some variation in mutated epitope MHC compatibility, T-cell recognition, and B-cell epitope probability for most frequent human HLAs. Conclusions This work provides a framework able to track down SARS-CoV-2 genomic variability.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 194
Author(s):  
Gábor Kemenesi ◽  
Gábor Endre Tóth ◽  
Dávid Bajusz ◽  
György M. Keserű ◽  
Gabriella Terhes ◽  
...  

SARS-CoV-2 is a recently emerged, novel human coronavirus responsible for the currently ongoing COVID-19 pandemic. Recombination is a well-known evolutionary strategy of coronaviruses, which may frequently result in significant genetic alterations, such as deletions throughout the genome. In this study we identified a co-infection with two genetically different SARS-CoV-2 viruses within a single patient sample via amplicon-based next generation sequencing in Hungary. The recessive strain contained an 84 base pair deletion in the receptor binding domain of the spike protein gene and was found to be gradually displaced by a dominant non-deleterious variant over-time. We have identified the region of the receptor-binding domain (RBD) that is affected by the mutation, created homology models of the RBDΔ84 mutant, and based on the available experimental data and calculations, we propose that the mutation has a deteriorating effect on the binding of RBD to the angiotensin-converting enzyme 2 (ACE2) receptor, which results in the negative selection of this variant. Extending the sequencing capacity toward the discovery of emerging recombinant or deleterious strains may facilitate the early recognition of novel strains with altered phenotypic attributes and understanding of key elements of spike protein evolution. Such studies may greatly contribute to future therapeutic research and general understanding of genomic processes of the virus.


Sign in / Sign up

Export Citation Format

Share Document