scholarly journals Transplantation of IPSC-Derived Cardiomyocyte Patches for Ischemic Cardiomyopathy

Author(s):  
Shigeru Miyagawa ◽  
Satoshi Kainuma ◽  
Takuji Kawamura ◽  
Kota Suzuki ◽  
Yoshito Ito ◽  
...  

Background: Despite major therapeutic advances, heart failure remains a life-threatening disorder, with 26 million patients worldwide, causing more deaths than cancer as a non-communicable disease. Therefore, novel strategies for the treatment of heart failure continue to be an important clinical need. Based on preclinical studies, allogenic human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches have been proposed as a potential therapeutic candidate for heart failure. We report the implantation of allogeneic hiPSC-CM patches in a patient with ischemic cardiomyopathy (ClinicalTrials.gov, #jRCT2053190081). Methods: The patches were produced under clinical-grade conditions and displayed cardiogenic phenotypes and safety in vivo (severe immunodeficient mice) without any genetic mutations in cancer-related genes. The patches were then implanted via thoracotomy into the left ventricle epicardium of the patient under immunosuppressive agents. Results: Positron emission tomography and computed tomography confirmed the possible efficacy and did not detect tumorigenesis in either the heart or other organs; the clinical symptoms improved 6 months after surgery, without any major adverse events, suggesting that the patches were well-tolerated. Furthermore, changes in the wall motion in the transplanted site were recovered, suggesting a favorable prognosis and the potential tolerance to exercise. Conclusions: This study is the first report of a successful transplant of hiPSC-CMs for severe ischemic cardiomyopathy.

Author(s):  
Takaaki Samura ◽  
Shigeru Miyagawa ◽  
Takuji Kawamura ◽  
Satsuki Fukushima ◽  
Jun‐ya Yokoyama ◽  
...  

Background Extracellular matrix, especially laminin‐221, may play crucial roles in viability and survival of human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPS‐CMs) after in vivo transplant. Then, we hypothesized laminin‐221 may have an adjuvant effect on therapeutic efficacy by enhancing cell viability and survival after transplantation of 3‐dimensional engineered cardiac tissue (ECT) to a rat model of myocardial infarction. Methods and Results In vitro study indicates the impacts of laminin‐221 on hiPS‐CMs were analyzed on the basis of mechanical function, mitochondrial function, and tolerance to hypoxia. We constructed 3‐dimensional ECT containing hiPS‐CMs and fibrin gel conjugated with laminin‐221. Heart function and in vivo behavior were assessed after engraftment of 3‐dimensional ECT (laminin‐conjugated ECT, n=10; ECT, n=10; control, n=10) in a rat model of myocardial infarction. In vitro assessment indicated that laminin‐221 improves systolic velocity, diastolic velocity, and maximum capacity of oxidative metabolism of hiPS‐CMs. Cell viability and lactate dehydrogenase production revealed that laminin‐221 improved tolerance to hypoxia. Furthermore, analysis of mRNA expression revealed that antiapoptotic genes were upregulated in the laminin group under hypoxic conditions. Left ventricular ejection fraction of the laminin‐conjugated ECT group was significantly better than that of other groups 4 weeks after transplantation. Laminin‐conjugated ECT transplantation was associated with significant improvements in expression levels of rat vascular endothelial growth factor. In early assessments, cell survival was also improved in laminin‐conjugated ECTs compared with ECT transplantation without laminin‐221. Conclusions In vitro laminin‐221 enhanced mechanical and metabolic function of hiPS‐CMs and improved the therapeutic impact of 3‐dimensional ECT in a rat ischemic cardiomyopathy model. These findings suggest that adjuvant laminin‐221 may provide a clinical benefit to hiPS‐CM constructs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


2021 ◽  
Author(s):  
Yasamin A. Jodat ◽  
Ting Zhang ◽  
Ziad Al Tanoury ◽  
Tom Kamperman ◽  
Kun Shi ◽  
...  

Abstract Engineering of biomimetic tissue implants provides an opportunity for repairing volumetric muscle loss (VML), beyond a tissue’s innate repair capacity. Here, we present thick, suturable, and pre-vascularized 3D muscle implants containing human induced pluripotent stem cell-derived myogenic precursor cells (hiPSC-MPCs), which can differentiate into skeletal muscle cells while maintaining a self-renewing pool. The formation of contractile myotubes and millimeter-long fibers from hiPSC-MPCs is achieved in chemically, mechanically, and structurally tailored extracellular matrix-based hydrogels, which can serve as scaffolds to ultimately organize the linear fusion of myoblasts. Embedded multi-material bioprinting is used to deposit complex patterns of perfusable vasculatures and aligned hiPSC-MPC channels within an endomysium-like supporting gel to recapitulate muscle architectural integrity in a facile yet highly rapid manner. Moreover, we demonstrate successful graft-host integration and de novo muscle formation upon in vivo implantation of pre-vascularized constructs within a VML model. This work pioneers the engineering of large pre-vascularized hiPSC-derived muscle tissues toward next generation VML regenerative therapies.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Michelle R Santoso ◽  
Yuko Tada ◽  
Gentaro Ikeda ◽  
Ji-Hye Jung ◽  
Evgeniya Vaskova ◽  
...  

Background: Induced pluripotent stem cells (iPSCs) and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for myocardial injury (MI). Our previous work showed that the iCMs restore the injured murine myocardium through secretion of paracrine factors, modulating apoptotic pathways to restore the murine peri-infarct region (PIR). Hypothesis: iCM-derived exosomes (iCM-Ex), a major constituent of the iCM secretome, may salvage the injured cardiomyocytes in the PIR. Methods: iCM-Ex were precipitated from iCM supernatant and characterized using various molecular analyses. Immunodeficient mice sustained MIs and received iCMs, iCM-Ex, or PBS control via direct intramyocardial injection into the PIR. Cardiac MRI assessed LV ejection fraction (LVEF) and viability at 2- and 4-week post-injection. iCMs, iCM-Ex, and PIR tissue were isolated for molecular and histological analyses. Results: iCM-Ex measured approximately 142 nm and expressed CD63 and CD9. iCM and iCM-Ex miRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. In vitro iCM apoptosis was increased significantly by hypoxia and exosome biogenesis inhibition while iCM-Ex or rapamycin reduced iCM apoptosis (p<0.05, vs. control). Mice treated with iCMs or iCM-Ex had significantly improved LVEF and LV viability compared to the control (p<0.05). Apoptosis and fibrosis were significantly reduced in iCM- and iCM-Ex treated mice. Autophagy and associated mTOR signaling pathway were significantly enhanced in iCM-Ex treatment group. Conclusions: iCM-Ex demonstrated similar efficacy as the iCMs in improving post-MI cardiac function by regulating autophagy and apoptosis of hypoxia injured cardiomyocytes. This finding represents the potential of cell-free, patient-specific biologic to treat ischemic cardiomyopathy by stimulation of an endogenous repair mechanism.


2018 ◽  
Vol 27 (9) ◽  
pp. 1340-1351 ◽  
Author(s):  
Dan Wang ◽  
Yue-Qi Sun ◽  
Wen-Xiang Gao ◽  
Xing-Liang Fan ◽  
Jian-Bo Shi ◽  
...  

Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) represent a promising cell source for patient-specific cell therapy. We previously demonstrated that they display an immunomodulatory effect on allergic airway inflammation. Glucocorticoids are powerful anti-inflammatory compounds and widely used in the therapy of allergic diseases. However, the effect of glucocorticoids on the immunomodulatory function of iPSC-MSCs remains unknown. This study aimed to determine the effect of dexamethasone (Dex) on the immunomodulatory function of iPSC-MSCs in vitro and in vivo. A total of three human iPSC-MSC clones were generated from amniocyte-derived iPSCs. Anti-CD3/CD28-induced peripheral blood mononuclear cell (PBMC) proliferation was used to assess the effect of Dex on the immunoinhibitory function of iPSC-MSCs in vitro. Mouse models of contact hypersensitivity (CHS) and allergic airway inflammation were induced, and the levels of inflammation in mice were analyzed with the treatments of iPSC-MSCs and Dex, alone and combined. The results showed that Dex did not interfere with the immunoinhibitory effect of iPSC-MSCs on PBMC proliferation. In CHS mice, simultaneous treatment with Dex did not affect the effect of iPSC-MSCs on the inflammation, both in regional draining lymph nodes and in inflamed ear tissue. In addition, co-administration of iPSC-MSCs with Dex decreased the local expression of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the ears of CHS mice. In the mouse model of allergic airway inflammation, iPSC-MSC treatment combined with Dex resulted in a similar extent of reduction in pulmonary inflammation as iPSC-MSCs or Dex treatment alone. In conclusion, Dex does not significantly affect the immunomodulatory function of iPSC-MSCs both in vitro and in vivo. These findings may have implications when iPSC-MSCs and glucocorticoids are co-administered.


Sign in / Sign up

Export Citation Format

Share Document