scholarly journals Single-cell analysis resolves the genetic program of primary vascular system formation in hybrid poplar

2021 ◽  
Author(s):  
Daniel Conde ◽  
Paolo M. Triozzi ◽  
Wendell J. Pereira ◽  
Henry W. Schmidt ◽  
Kelly M. Balmant ◽  
...  

Despite the enormous potential of novel approaches to explore gene expression at a single-cell level, we lack a high-resolution and cell type-specific gene expression map of the shoot apex in woody perennials. We use single-nuclei RNA sequencing to determine the cell type-specific transcriptome of the Populus vegetative shoot apex. We identified highly heterogeneous cell populations clustered into seven broad groups represented by 18 transcriptionally distinct cell clusters. Next, we established the developmental trajectories of epidermal cells, leaf mesophyll, and vascular tissue. Motivated by the high similarities between Populus and Arabidopsis cell population in the vegetative apex, we created and applied a pipeline for interspecific single-cell expression data integration. We contrasted the developmental trajectories of primary phloem and xylem formation in both species, establishing the first comparison of primary vascular development between a model annual herbaceous and a woody perennial plant species. Our results offer a valuable resource for investigating the basic principles underlying cell division and differentiation conserved between herbaceous and perennial species, which also allows the evaluation of the divergencies at single-cell resolution.

2018 ◽  
Author(s):  
Ken Jean-Baptiste ◽  
José L. McFaline-Figueroa ◽  
Cristina M. Alexandre ◽  
Michael W. Dorrity ◽  
Lauren Saunders ◽  
...  

ABSTRACTSingle-cell RNA-seq can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach toA. thalianaroot cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single-cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single-cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yafei Lyu ◽  
Randy Zauhar ◽  
Nicholas Dana ◽  
Christianne E. Strang ◽  
Jian Hu ◽  
...  

AbstractAge‐related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.


Author(s):  
Johan Gustafsson ◽  
Felix Held ◽  
Jonathan Robinson ◽  
Elias Björnson ◽  
Rebecka Jörnsten ◽  
...  

Abstract Background Cell-type specific gene expression profiles are needed for many computational methods operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital cytometry. However, the gene expression profile of a cell type can vary substantially due to both technical factors and biological differences in cell state and surroundings, reducing the efficacy of such methods. Here, we investigated which factors contribute most to this variation. Results We evaluated different normalization methods, quantified the magnitude of variation introduced by different sources, and examined the differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We applied methods such as random forest regression to a collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T cells, and found that the technical variation across laboratories is of the same magnitude as the biological variation across cell types. Tissue of origin and cell subtype are less important but still substantial factors, while the difference between individuals is relatively small. We also show that much of the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained by the number of read duplicates per mRNA molecule in the single-cell sample.Conclusions Our work shows the importance of either matching or correcting for technical factors when creating cell-type specific gene expression profiles that are to be used together with bulk samples.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1161 ◽  
Author(s):  
Xifang Sun ◽  
Shiquan Sun ◽  
Sheng Yang

Estimating cell type compositions for complex diseases is an important step to investigate the cellular heterogeneity for understanding disease etiology and potentially facilitate early disease diagnosis and prevention. Here, we developed a computationally statistical method, referring to Multi-Omics Matrix Factorization (MOMF), to estimate the cell-type compositions of bulk RNA sequencing (RNA-seq) data by leveraging cell type-specific gene expression levels from single-cell RNA sequencing (scRNA-seq) data. MOMF not only directly models the count nature of gene expression data, but also effectively accounts for the uncertainty of cell type-specific mean gene expression levels. We demonstrate the benefits of MOMF through three real data applications, i.e., Glioblastomas (GBM), colorectal cancer (CRC) and type II diabetes (T2D) studies. MOMF is able to accurately estimate disease-related cell type proportions, i.e., oligodendrocyte progenitor cells and macrophage cells, which are strongly associated with the survival of GBM and CRC, respectively.


2018 ◽  
Author(s):  
Joshua Welch ◽  
Velina Kozareva ◽  
Ashley Ferreira ◽  
Charles Vanderburg ◽  
Carly Martin ◽  
...  

SummaryDefining cell types requires integrating diverse measurements from multiple experiments and biological contexts. Recent technological developments in single-cell analysis have enabled high-throughput profiling of gene expression, epigenetic regulation, and spatial relationships amongst cells in complex tissues, but computational approaches that deliver a sensitive and specific joint analysis of these datasets are lacking. We developed LIGER, an algorithm that delineates shared and dataset-specific features of cell identity, allowing flexible modeling of highly heterogeneous single-cell datasets. We demonstrated its broad utility by applying it to four diverse and challenging analyses of human and mouse brain cells. First, we defined both cell-type-specific and sexually dimorphic gene expression in the mouse bed nucleus of the stria terminalis, an anatomically complex brain region that plays important roles in sex-specific behaviors. Second, we analyzed gene expression in the substantia nigra of seven postmortem human subjects, comparing cell states in specific donors, and relating cell types to those in the mouse. Third, we jointly leveraged in situ gene expression and scRNA-seq data to spatially locate fine subtypes of cells present in the mouse frontal cortex. Finally, we integrated mouse cortical scRNA-seq profiles with single-cell DNA methylation signatures, revealing mechanisms of cell-type-specific gene regulation. Integrative analyses using the LIGER algorithm promise to accelerate single-cell investigations of cell-type definition, gene regulation, and disease states.


2021 ◽  
Author(s):  
Ming Yang ◽  
Benjamin R. Harrison ◽  
Daniel E.L. Promislow

AbstractBackgroundAlong with specialized functions, cells of multicellular organisms also perform essential functions common to most if not all cells. Whether diverse cells do this by using the same set of genes, interacting in a fixed coordinated fashion to execute essential functions, remains a central question in biology. Single-cell RNA-sequencing (scRNA-seq) measures gene expression of individual cells, enabling researchers to discover gene expression patterns that contribute to the diversity of cell functions. Current analyses focus primarily on identifying differentially expressed genes across cells. However, patterns of co-expression between genes are probably more indicative of biological processes than are the expression of individual genes. Using single cell transcriptome data from the fly brain, here we focus on gene co-expression to search for a core cellular network.ResultsIn this study, we constructed cell type-specific gene co-expression networks using single cell transcriptome data of brains from the fruit fly, Drosophila melanogaster. We detected a set of highly coordinated genes preserved across cell types in fly brains and defined this set as the core cellular network. This core is very small compared with cell type-specific gene co-expression networks and shows dense connectivity. Modules within this core are enriched for basic cellular functions, such as translation and ATP metabolic processes, and gene members of these modules have distinct evolutionary signatures.ConclusionsOverall, we demonstrated that a core cellular network exists in diverse cell types of fly brains and this core exhibits unique topological, structural, functional and evolutionary properties.


2020 ◽  
Author(s):  
Johan Gustafsson ◽  
Felix Held ◽  
Jonathan Robinson ◽  
Elias Björnson ◽  
Rebecka Jörnsten ◽  
...  

Abstract Cell-type specific gene expression profiles are needed for many computational methods operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital cytometry. However, the gene expression profile of a cell type can vary substantially due to both technical factors and biological differences in cell state and surroundings, reducing the efficacy of such methods. Here, we investigated which factors contribute most to this variation. We evaluated different normalization methods, quantified the variance explained by different factors, evaluated the effect on deconvolution of cell type fractions, and examined the differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We investigated a collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T cells, and found that the technical variation across laboratories is substantial, even for genes specifically selected for deconvolution, and has a confounding effect on deconvolution. Tissue of origin is also a substantial factor, highlighting the challenge of applying cell type profiles derived from blood on mixtures from other tissues. We also show that much of the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained by the number of read duplicates per mRNA molecule in the single-cell sample. Our work shows the importance of either matching or correcting for technical factors when creating cell-type specific gene expression profiles that are to be used together with bulk samples.


2021 ◽  
Author(s):  
Yanshuo Chen ◽  
Yixuan Wang ◽  
Yuelong Chen ◽  
Yumeng Wei ◽  
Yunxiang Li ◽  
...  

AbstractSingle-cell RNA-seq has become a powerful tool for researchers to study biologically significant characteristics at explicitly high resolution, but its application on emerging data is currently limited by its intrinsic techniques. Here, we introduce TAPE, a deep learning method that connects bulk RNA-seq and single-cell RNA-seq to balance the demands of big data and precision. By taking advantage of constructing an interpretable decoder and training under a unique scheme, TAPE can predict cell-type fractions and cell-type-specific gene expression tissue-adaptively. Compared with existing methods on several benchmarking datasets, TAPE is more accurate (up to 40% performnace improvement on the real bulk data) and faster than the previous methods. It is sensitive enough to provide biologically meaningful predictions. For example, only TAPE can predict the tendency of increasing monocytes-to-lymphocytes (MLR) ratio in COVID-19 patients from mild to serious symptoms, whose estimated indices are consistent with laboratory data. More importantly, through the analysis of clinical data, TAPE shows its ability to predict cell-type-specific gene expression profiles with biological significance. Combining with single-sample gene set enrichment analysis (ssGSEA), TAPE also provides valuable clues for people to investigate the immune response in different virus-infected patients. We believe that TAPE will enable and accelerate the precise analysis of high-throughput clinical data in a wide range.


Sign in / Sign up

Export Citation Format

Share Document