scholarly journals Genome-wide identification and expression analysis of the invertase gene family in common wheat

2021 ◽  
Author(s):  
Chao Wang ◽  
Guanghao Wang ◽  
Xiaojian Qu ◽  
Xiangyu Zhang ◽  
pingchuan Deng ◽  
...  

Background: The degradation of sucrose plays an important role in the process of crop biomass allocation and yield formation. Invertase (INV) irreversibly catalyzes the conversion of sucrose into glucose and fructose, which doomed its' important role in plant development and stress tolerance. However, the functions of INV genes in wheat, one of the most important crops, were less studied due to the polyploidy. Results: Here, we systematically analyzed the INV gene family based on the latest published wheat reference genomic information. A total of 126 TaINV genes were identified and classified into three classes based on the phylogenetic relationship and their gene structure. Of which, 11 and 83 gene pairs were identified as tandem and segmental duplication genes respectively, while the Ka/Ks ratios of tandem and segmental duplication TaINV genes were less than 1. Expression profile analysis shows that 18 TaINV genes have tissue-specific expression, and 54 TaINV genes were involved in stress response. Furthermore, RNA-seq showed that 35 genes are differentially expressed in grain weight NILs N0910-81L/N0910-81S, in which 9 TaINVs were stably detected by qRT-PCR at three time-points, 4, 7 and 10 DPA. Four of them (TaCWI47, TaCWI48, TaCWI50 and TaVI27) different expressed between the NILs resided in 4 QTL segments (QTGW.nwafu-5DL.1, QTGW.nwafu-5DL.2, QTGW.nwafu-7AS.1 and QTGW.nwafu-7AS.2). These findings facilitate function investigations of the wheat INV gene family and provide new insights into the grain development mechanism in wheat. Conclusions: Our results showed that allopolyploid events were the main reason for the expansion of the TaINV gene family in hexaploid wheat, and duplication genes might undergo purifying selection. The expression profiling of TaINV genes implied that they are likely to play an important role in wheat growth and development and adaption to stressful environments. And TaCWI47, TaCWI48, TaCWI50 and TaVI27 may have more important roles in grain developments. Our study lay a base for further dissecting the functional characterization of TaINV family members.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10457
Author(s):  
Xianwen Meng ◽  
Ting Yang ◽  
Jing Liu ◽  
Mingde Zhao ◽  
Jiuli Wang

Background As an important class of E3 ubiquitin ligases in the ubiquitin proteasome pathway, proteins containing homologous E6-AP carboxyl terminus (HECT) domains are crucial for growth, development, metabolism, and abiotic and biotic stress responses in plants. However, little is known about HECT genes in wheat (Triticum aestivum L.), one of the most important global crops. Methods Using a genome-wide analysis of high-quality wheat genome sequences, we identified 25 HECT genes classified into six groups based on the phylogenetic relationship among wheat, rice, and Arabidopsis thaliana. Results The predicted HECT genes were distributed evenly in 17 of 21 chromosomes of the three wheat subgenomes. Twenty-one of these genes were hypothesized to be segmental duplication genes, indicating that segmental duplication was significantly associated with the expansion of the wheat HECT gene family. The Ka/Ks ratios of the segmental duplication of these genes were less than 1, suggesting purifying selection within the gene family. The expression profile analysis revealed that the 25 wheat HECT genes were differentially expressed in 15 tissues, and genes in Group II, IV, and VI (UPL8, UPL6, UPL3) were highly expressed in roots, stems, and spikes. This study contributes to further the functional analysis of the HECT gene family in wheat.


2020 ◽  
Author(s):  
Yanan Song ◽  
Hongli Cui ◽  
Ying Shi ◽  
Jinai Xue ◽  
Chunli Ji ◽  
...  

Abstract Background: WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, knowledge is limited for WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance against various stresses. Here, genome-wide characterization of WRKY proteins is performed to examine their gene-structures, phylogenetics, expressions, conserved motif organizations, and functional annotation to identify candidate WRKYs mediating regulation of stress resistance in camelina.Results: Total of 242 CsWRKY proteins encoded by 224 gene loci distributed uneven on chromosomes were identified, and classified into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in C. sativa and Arabidopsis genomes as well as 282 pairs for C. sativa and B. napus, respectively. 137 segmental duplication events were observed but no tandem duplication in camelina genome. Ten major conserved motifs were examined, with WRKYGQK as the most conserved and several variants existed in many CsWRKYs. Expression analysis revealed that half more CsWRKY genes were expressed constitutively, and a set of them had a tissue-specific expression. Notably, 11 CsWRKY genes exhibited significantly expression changes in plant seedlings under cold, salt, and drought stress, respectively, having preferentially inducible expression pattern in response to the stress.Conclusions: The present described a detail analysis of CsWRKY gen family and their expression profiled in twelve tissues and under several stress conditions. Segmental duplication is the major force for large expansion of this gene family, and a strong purifying pressure happened for CsWRKY proteins evolutionally. CsWRKY proteins play important roles for plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms were found to be the key players possibly in mediating plant response to various stresses. Overall, our results provide a foundation for understanding roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance to stress as well as development of stress tolerance cultivars for Cruciferae crops.


2021 ◽  
Author(s):  
Zheng Liu ◽  
Jia-Li Liu ◽  
Lin An ◽  
Tao Wu ◽  
Li Yang ◽  
...  

Abstract Background: Canopy architecture is critical in determining the light environment, and subsequently the photosynthetic productivity of fruit crops. Numerous CCT domain-containing genes are crucial for plant adaptive responses to diverse environmental cues. Due to the biological importance of CCT genes, many researchers have focused on their functional characterization. However, little information was available about the CCT genes (PbCCTs) of pear, an important fruit crop.Results: Genome-wide sequence analysis identified 42 putative PbCCTs in the genome of pear (Pyrus bretschneideri Rehd.). Phylogenetic analysis indicated these genes were divided into five subfamilies, namely, COL (14 members), PRR (8 members), ZIM (6 members), TCR1 (6 members) and ASML2 (8 members). Analysis of exon-intron structures and conserved domains provided support for the classification. Genome duplication analysis indicated that segmental duplication events played a crucial role in the expansion of the CCT family in pear, and that the CCT family evolved under the effect of purifying selection. Expression profiles exhibited diverse expression patterns of PbCCTs in various tissues and in response to varying red and blue light. Additionally, transient overexpression of PbPRR2 in Nicotiana benthamiana leaves resulted in inhibition of photosynthetic performance, suggesting that PbPRR2 may be a negative regulator of photosynthesis. Conclusions:This study provides a comprehensive analysis of the CCT gene family in pear and will facilitate further functional investigations of the PbCCTs to uncover their biological roles in light response.


PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196140
Author(s):  
Thaís R. Santiago ◽  
Valquiria M. Pereira ◽  
Wagner R. de Souza ◽  
Andrei S. Steindorff ◽  
Bárbara A. D. B. Cunha ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250349
Author(s):  
Jiabin Ci ◽  
Xingyang Wang ◽  
Qi Wang ◽  
Fuxing Zhao ◽  
Wei Yang ◽  
...  

Gibberellin-dioxygenases genes plays important roles in the regulating plant development. However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic analysis. This result was also further confirmed by their gene structure and conserved motif characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes showed different tissue expression pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberellin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA treatment than that under normal condition in leaf sheath. In addition, we found that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles in plant development. These findings will increase our understanding of Gibberellin-dioxygenases gene family in response to GA and will provide a solid base for further functional characterization of Gibberellin-dioxygenases genes in maize.


Sign in / Sign up

Export Citation Format

Share Document