scholarly journals Genome-wide analysis of gibberellin-dioxygenases gene family and their responses to GA applications in maize

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250349
Author(s):  
Jiabin Ci ◽  
Xingyang Wang ◽  
Qi Wang ◽  
Fuxing Zhao ◽  
Wei Yang ◽  
...  

Gibberellin-dioxygenases genes plays important roles in the regulating plant development. However, Gibberellin-dioxygenases genes are rarely reported in maize, especially response to gibberellin (GA). In present study, 27 Gibberellin-dioxygenases genes were identified in the maize and they were classified into seven subfamilies (I-VII) based on phylogenetic analysis. This result was also further confirmed by their gene structure and conserved motif characteristics. And gibberellin-dioxygenases genes only occurred segmental duplication that occurs most frequently in plants. Furthermore, the gibberellin-dioxygenases genes showed different tissue expression pattern in different tissues and most of the gibberellin-dioxygenases genes showed tissue specific expression. Moreover, almost all the gibberellin-dioxygenases genes were significantly elevated in response to GA except for ZmGA2ox2 and ZmGA20ox10 of 15 gibberellin-dioxygenases genes normally expressed in leaves while 10 and 11 gibberellin-dioxygenases genes showed up and down regulated under GA treatment than that under normal condition in leaf sheath. In addition, we found that ZmGA2ox1, ZmGA2ox4, ZmGA20ox7, ZmGA3ox1 and ZmGA3ox3 might be potential genes for regulating balance of GAs which play essential roles in plant development. These findings will increase our understanding of Gibberellin-dioxygenases gene family in response to GA and will provide a solid base for further functional characterization of Gibberellin-dioxygenases genes in maize.

2020 ◽  
Author(s):  
Yanan Song ◽  
Hongli Cui ◽  
Ying Shi ◽  
Jinai Xue ◽  
Chunli Ji ◽  
...  

Abstract Background: WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, knowledge is limited for WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance against various stresses. Here, genome-wide characterization of WRKY proteins is performed to examine their gene-structures, phylogenetics, expressions, conserved motif organizations, and functional annotation to identify candidate WRKYs mediating regulation of stress resistance in camelina.Results: Total of 242 CsWRKY proteins encoded by 224 gene loci distributed uneven on chromosomes were identified, and classified into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in C. sativa and Arabidopsis genomes as well as 282 pairs for C. sativa and B. napus, respectively. 137 segmental duplication events were observed but no tandem duplication in camelina genome. Ten major conserved motifs were examined, with WRKYGQK as the most conserved and several variants existed in many CsWRKYs. Expression analysis revealed that half more CsWRKY genes were expressed constitutively, and a set of them had a tissue-specific expression. Notably, 11 CsWRKY genes exhibited significantly expression changes in plant seedlings under cold, salt, and drought stress, respectively, having preferentially inducible expression pattern in response to the stress.Conclusions: The present described a detail analysis of CsWRKY gen family and their expression profiled in twelve tissues and under several stress conditions. Segmental duplication is the major force for large expansion of this gene family, and a strong purifying pressure happened for CsWRKY proteins evolutionally. CsWRKY proteins play important roles for plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms were found to be the key players possibly in mediating plant response to various stresses. Overall, our results provide a foundation for understanding roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance to stress as well as development of stress tolerance cultivars for Cruciferae crops.


2020 ◽  
Vol 21 (3) ◽  
pp. 931
Author(s):  
Ya Xu ◽  
Lu Liu ◽  
Pan Zhao ◽  
Jing Tong ◽  
Naiqin Zhong ◽  
...  

In eukaryotic cells, nucleocytoplasmic trafficking of macromolecules is largely mediated by Karyopherin β/Importin (KPNβ or Impβ) nuclear transport factors, and they import and export cargo proteins or RNAs via the nuclear pores across the nuclear envelope, consequently effecting the cellular signal cascades in response to pathogen attack and environmental cues. Although achievements on understanding the roles of several KPNβs have been obtained from model plant Arabidopsis thaliana, comprehensive analysis of potato KPNβ gene family is yet to be elucidated. In our genome-wide identifications, a total of 13 StKPNβ (Solanum tuberosum KPNβ) genes were found in the genome of the doubled monoploid S. tuberosum Group Phureja DM1-3. Sequence alignment and conserved domain analysis suggested the presence of importin-β N-terminal domain (IBN_N, PF08310) or Exporin1-like domain (XpoI, PF08389) at N-terminus and HEAT motif at the C-terminal portion in most StKPNβs. Phylogenetic analysis indicated that members of StKPNβ could be classified into 16 subgroups in accordance with their homology to human KPNβs, which was also supported by exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis and quantitative real-time PCR experiments revealed that, except StKPNβ3d and StKPNβ4, almost all StKPNβs were ubiquitously expressed in all tissues analyzed, whereas transcriptional levels of several StKPNβs were increased upon biotic/abiotic stress or phytohormone treatments, reflecting their potential roles in plant growth, development or stress responses. Furthermore, we demonstrated that silencing of StKPNβ3a, a SA- and H2O2-inducible KPNβ genes led to increased susceptibility to environmental challenges, implying its crucial roles in plant adaption to abiotic stresses. Overall, our results provide molecular insights into StKPNβ gene family, which will serve as a strong foundation for further functional characterization and will facilitate potato breeding programs.


Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


Genes ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 362 ◽  
Author(s):  
Marie Mmadi ◽  
Komivi Dossa ◽  
Linhai Wang ◽  
Rong Zhou ◽  
Yanyan Wang ◽  
...  

Author(s):  
Shefali Mishra ◽  
Pradeep Sharma ◽  
Rajender Singh ◽  
ratan Tiwari ◽  
Gyanendra Pratap Singh

The SnRK gene family is a key regulator playing an important role in plant stress response by phosphorylating the target protein to regulate the signalling pathways. The function of SnRK gene family has been reported in many species but is limited to Triticum asetivum. In this study, SnRK gene family in the wheat genome was identified and its structural characteristics were described. One hundred forty-seven SnRK genes distributed across 21 chromosomes were identified in the Triticum aestivum genome and categorised into three subgroups (SnRK1/2/3) based on phylogenetic analyses and domain types. The gene intron-exon structure and protein-motif composition of SnRKs were similar within each subgroup but different amongst the groups. Gene duplication between the wheat, Arabidopsis, rice and barley genomes was also investigated in order to get insight into the evolutionary aspects of the TaSnRK family genes. SnRK genes showed differential expression patterns in leaves, roots, spike, and grains. Redundant stress-related cis-elements were also found in the promoters of 129 SnRK genes and their expression levels varied widely following drought, ABA and light regulated elements. In particular, TaSnRK2.11 had higher and increased expression under the abiotic stresses and can be a candidate gene for the abiotc stress tolerance. The findings will aid in the functional characterization of TaSnRK genes for further research.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247170
Author(s):  
Md. Soyib Hasan ◽  
Vishal Singh ◽  
Shiful Islam ◽  
Md. Sifatul Islam ◽  
Raju Ahsan ◽  
...  

Glutathione transferases (GSTs) constitute an ancient, ubiquitous, multi-functional antioxidant enzyme superfamily that has great importance on cellular detoxification against abiotic and biotic stresses as well as plant development and growth. The present study aimed to a comprehensive genome-wide identification and functional characterization of GST family in one of the economically important legume plants—Medicago truncatula. Here, we have identified a total of ninety-two putative MtGST genes that code for 120 proteins. All these members were classified into twelve classes based on their phylogenetic relationship and the presence of structural conserved domain/motif. Among them, 7 MtGST gene pairs were identified to have segmental duplication. Expression profiling of MtGST transcripts revealed their high level of organ/tissue-specific expression in most of the developmental stages and anatomical tissues. The transcripts of MtGSTU5, MtGSTU8, MtGSTU17, MtGSTU46, and MtGSTU47 showed significant up-regulation in response to various abiotic and biotic stresses. Moreover, transcripts of MtGSTU8, MtGSTU14, MtGSTU28, MtGSTU30, MtGSTU34, MtGSTU46 and MtGSTF8 were found to be highly upregulated in response to drought treatment for 24h and 48h. Among the highly stress-responsive MtGST members, MtGSTU17 showed strong affinity towards its conventional substrates reduced glutathione (GSH) and 1‐chloro‐2,4‐dinitrobenzene (CDNB) with the lowest binding energy of—5.7 kcal/mol and -6.5 kcal/mol, respectively. Furthermore, the substrate-binding site residues of MtGSTU17 were found to be highly conserved. These findings will facilitate the further functional and evolutionary characterization of GST genes in Medicago.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hongyi Nie ◽  
Haiyang Geng ◽  
Yan Lin ◽  
Shupeng Xu ◽  
Zhiguo Li ◽  
...  

The forkhead box (Fox) gene family, one of the most important families of transcription factors, participates in various biological processes. However, Fox genes in Hymenoptera are still poorly known. In this study, 14 Fox genes were identified in the genome of Apis cerana. In addition, 16 (Apis mellifera), 13 (Apis dorsata), 16 (Apis florea), 17 (Bombus terrestris), 16 (Bombus impatiens), and 18 (Megachile rotundata) Fox genes were identified in their genomes, respectively. Phylogenetic analyses suggest that FoxA is absent in the genome of A. dorsata genome. Similarly, FoxG is missing in the genomes A. cerana and A. dorsata. Temporal expression profiles obtained by quantitative real-time PCR revealed that Fox genes have distinct expression patterns in A. cerana, especially for three genes ACSNU03719T0 (AcFoxN4), ACSNU05765T0 (AcFoxB), and ACSNU07465T0 (AcFoxL2), which displayed high expression at the egg stage. Tissue expression patterns showed that FoxJ1 is significantly higher in the antennae of A. cerana and A. mellifera compared to other tissues. These results may facilitate a better understanding of the potential physiological functions of the Fox gene family in A. cerana and provide valuable information for a comprehensive functional analysis of the Fox gene family in Hymenopterans.


Sign in / Sign up

Export Citation Format

Share Document