scholarly journals mBeRFP, a versatile fluorescent tool to enhance multichannel live imaging and its applications

2022 ◽  
Author(s):  
Emmanuel Martin ◽  
Magali Suzanne

Cell and developmental biology increasingly require live imaging of protein dynamics in cells, tissues or living organisms. Thanks to the discovery and the development of a panel of fluorescent proteins over the last decades, live imaging has become a powerful and commonly used approach. However, multicolor live imaging remains challenging. The generation of long Stokes shift red fluorescent proteins, such as mBeRFP, offers interesting new perspectives to bypass this limitation. Here, we constructed a set of mBeRFP-expressing vectors and provided a detailed characterization of this fluorescent protein for in vivo live imaging and its applications in Drosophila. Briefly, we showed that a single illumination source is sufficient to simultaneously stimulate mBeRFP and GFP. We demonstrated that mBeRFP can be easily combined with classical green and red fluorescent protein without any crosstalk. We also showed that the low photobleaching of mBeRFP is suitable for live imaging, and that this protein can be used for quantitative applications such as FRAP or laser ablation. Finally, we believe that this fluorescent protein, with the set of new possibilities it offers, constitutes an important tool for cell, developmental and mechano biologists in their current research.

2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250019 ◽  
Author(s):  
YING ZHENG ◽  
CHUAN HUANG ◽  
ZHIYONG CHENG ◽  
MIN CHEN

Background and aims: The spectral properties of enhanced green fluorescent protein (EGFP) used in current visualizable animal models for nasopharyngeal carcinoma (NPC) result in a limited imaging depth. Far-red fluorescent proteins have optimal spectral wavelengths that allow deep tissue penetration, thus are well-suited for the imaging of tumor growth and metastases in live animals. This study aims to establish an imageable animal model of NPC using far-red fluorescent proteins. Methods: Eukaryotic expression vectors of far-red fluorescent proteins, mLumin and Katushka S158A, were separately transfected into 5-8F NPC cells, and cell lines stably expressing the far-red fluorescent proteins were obtained. These cells were intraperitoneally or intravenously injected into mice, and their tumorigenic and metastatic potential were examined through fluorescence imaging. Finally, factors affecting their tumorigenic ability were further assessed through testing side population (SP) cells proportion by flow cytometry. Results: NPC cell line with high tumorigenicity and metastasis (5-8F-mL2) was screened out, which stably expressed far-red fluorescent protein. Intraperitoneal and intravenous injection of 5-8F-mL2 cells resulted in an abdomen metastasis model and a lung metastasis model. In addition, NPC cell line without tumorigenicity (5-8F-Katushka S158A) was screened out. The percentage of SP cells between 5-8F-mL2 and 5-8F-Katushka S158A was found different, suggesting that the SP cell proportion may play a key role in the determination of cell tumorigenic ability. Conclusion: We successfully established animal models for NPC with high tumorigenicity and metastasis using a super-bright far-red fluorescent protein. Owing to the super-brightness and excellent wavelength parameters, these models may be applied as useful tools for intuitive and efficient monitoring of tumor growth and metastasis, as well as assessing the efficacy of nasopharyngeal cancer drugs.


2020 ◽  
Author(s):  
Fabian C. Herbert ◽  
Olivia Brohlin ◽  
Tyler Galbraith ◽  
Candace Benjamin ◽  
Cesar A. Reyes ◽  
...  

<div> <div> <div> <p>Icosahedral virus-like particles (VLPs) derived from bacteriophages Qβ and PP7 encapsulating small-ultra red fluorescent protein (smURFP) were produced using a versatile supramolecualr capsid dissassemble-reassemble approach. The generated fluorescent VLPs display identical structural properties to their non-fluorescent analogs. Encapsulated smURFP shows indistinguishable photochemical properties to its unencapsulated counterpart, exhibits outstanding stability towards pH, and produces bright in vitro images following phagocytosis by macrophages. In vivo imaging allows biodistribution to be imaged at different time points. Ex vivo imaging of intravenously administered encapsulated smURFP reveleas localization in the liver and </p> </div> </div> <div> <div> <p>kidneys after 2 h blood circulation and substantial elimination constructs as non-invasive in vivo imaging agents. </p> </div> </div> </div>


2014 ◽  
Vol 70 (a1) ◽  
pp. C1670-C1670
Author(s):  
Sergei Pletnev ◽  
Daria Shcherbakova ◽  
Oksana Subach ◽  
Vladimir Malashkevich ◽  
Steven Almo ◽  
...  

Fluorescent proteins (FPs) have become valuable tools for molecular biology, biochemistry, medicine, and cancer research. Starting from parent green fluorescent protein (GFP), most challenging task of the FPs studies was the development of FPs with longer excitation/emission wavelength. This pursuit was motivated by advantages of so-called red-shifted FPs, namely, lower background of cellular autofluorescence in microscopy, lower light scattering and reduced tissue absorbance of longer wavelengths for in vivo imaging. In addition to FPs with regular spectral properties, there are proteins of other types available, including FPs with a large Stokes shift and photoconvertible FPs. These special kinds of FPs have become useful in super-resolution microscopy, imaging of enzyme activities, protein-protein interactions, photolabeling, and in vivo imaging. According to their emission wavelength, red-shifted FPs could be divided in the following groups: 520-540 nm yellow FPs (YFPs), 540-570 nm orange FPs (OFPs), 570-620 nm red FPs (RFPs), and > 620 nm far-RFPs. Red shift of the excitation/emission bands of these FPs is predominantly achieved by extension of the conjugated system of the chromophore and its protonation/deprotonation. The variety of spectral properties of FPs (excitation and emission wavelength, quantum yield, brightness, photo- and pH- stability, photoconversion, large Stokes shift, etc) results from the different chromophore structures and its interactions with surrounding amino acid residues. In this work we focus on structural studies and molecular mechanisms of FPs with orange emission.


2021 ◽  
Author(s):  
Maxime Fages-Lartaud ◽  
Lisa Tietze ◽  
Florence Elie ◽  
Rahmi Lale ◽  
Martin Frank Hohmann-Marriott

AbstractFluorescent proteins are essential reporters in cell biology and molecular biology. Here, we reveal that red-fluorescent proteins possess an alternative translation initiation site that produces a short functional protein isoform. The short isoform creates significant background fluorescence that biases the outcome of expression studies. Our investigation identifies the short protein isoform, traces its origin, and determines the extent of the issue within the family of red fluorescent protein. Our analysis shows that the short isoform defect of the red fluorescent protein family may affect the interpretation of many published studies. Finally, we provide a re-engineered mCherry variant that lacks background expression as an improved tool for imaging and protein expression studies.


2001 ◽  
Vol 183 (12) ◽  
pp. 3791-3794 ◽  
Author(s):  
Fernando Rodrigues ◽  
Martijn van Hemert ◽  
H. Yde Steensma ◽  
Manuela Côrte-Real ◽  
Cecı́la Leão

ABSTRACT We describe the utilization of a red fluorescent protein (DsRed) as an in vivo marker for Saccharomyces cerevisiae. Clones expressing red and/or green fluorescent proteins with both cytoplasmic and nuclear localization were obtained. A series of vectors are now available which can be used to create amino-terminal (N-terminal) and carboxyl-terminal (C-terminal) fusions with the DsRed protein.


2020 ◽  
Author(s):  
Tom Kaufman ◽  
Erez Nitzan ◽  
Nir Firestein ◽  
Miriam Ginzberg ◽  
Seshu Iyengar ◽  
...  

Abstract While multiplexing samples using DNA barcoding revolutionized the pace of biomedical discovery, multiplexing of live imaging-based applications has been limited by the number of fluorescent proteins that can be deconvoluted using common microscopy equipment. To address this limitation we developed visual barcodes that discriminate the clonal identity of single cells by targeting different fluorescent proteins to specific subcellular locations. We demonstrate that deconvolution of these barcodes is highly accurate and robust to many cellular perturbations. We then used visual barcodes to generate ‘Signalome’ cell-lines by multiplexing live reporters to monitor the simultaneous activity in 12 branches of signaling, in live cells, at single cell resolution, over time. Using the ‘Signalome’ we identified two distinct clusters of signaling pathways that balance growth and proliferation, emphasizing the importance of growth homeostasis as a central organizing principle in cancer signaling. The ability to multiplex samples in live imaging applications, both in vitro and in vivo may allow better high-content characterization of complex biological system


2021 ◽  
Author(s):  
Ziying Wang ◽  
Long Li ◽  
Rongting Hu ◽  
Peiyu Zhong ◽  
Yiran Zhang ◽  
...  

Abstract Background Red fluorescent proteins (RFPs) are widely used in molecular biology research, especially in deep tissues and animal models, because of their superior autofluorescence, light scattering, and phototoxicity to GFP. Although RFP can be easily monitored in vivo, improved manipulation of RFP is still desired. Using suitable nanobodies (Nbs) to bind to different epitopes of RFP is the most promising approach; thus, it is crucial to obtain structural information on how the different Nbs interact with RFP. Results We determined the crystal structures of the LaM2-mCherry and LaM4-mCherry complexes at 1.4 Å and 1.9 Å resolution. Our results showed that LaM2 binds to the side of the mCherry β-barrel, while Lam4 binds to the bottom of the β-barrel and does not interfere with the homo-oligomerization interface. The distinct binding sites of LaM2 and LaM4 were further verified by ITC, F-SEC and DLS assays. Our results also showed that LaM2 and LaM4 can bind simultaneously to mCherry, which is crucial for recruiting multiple operation elements to the RFP. The binding of LaM2 or LaM4 did not significantly change the chromophore environment of mCherry, which is important for fluorescence quantification assays, while several GFP Nbs significantly altered the fluorescence. Mutation of the residues of the LaM2 or LaM4 binding interface to mCherry significantly decreased the binding affinity of the Nb to mCherry. Conclusions Our results provided atomic resolution interaction information on the binding of Nbs LaM2 and LaM4 binding with mCherry, which is important for developing detection and manipulation methods for RFP-based biotechnology.


Sign in / Sign up

Export Citation Format

Share Document