scholarly journals SLDP and LIPA mediate lipid droplet-plasma membrane tethering in Arabidopsis thaliana

2022 ◽  
Author(s):  
Hannah E Krawczyk ◽  
Siqi Sun ◽  
Nathan Doner ◽  
Qiqi Yan ◽  
Magdiel Sheng Satha Lim ◽  
...  

Membrane contact sites (MCS) are inter-organellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here we identified and characterised three proteins that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localised SEED LD PROTEIN (SLDP) 1 and 2 and PM-localised LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and 2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA on the other hand is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterised by dynamically moving LDs in the cytosolic streaming. Further, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis thaliana.

2013 ◽  
Vol 94 (3) ◽  
pp. 682-686 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Kensaku Maejima ◽  
Ken Komatsu ◽  
Osamu Netsu ◽  
Takuya Keima ◽  
...  

Fig mosaic virus (FMV), a member of the newly formed genus Emaravirus, is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.


1998 ◽  
Vol 330 (2) ◽  
pp. 853-860 ◽  
Author(s):  
N. J. Silvia MORENO ◽  
Li ZHONG ◽  
Hong-Gang LU ◽  
Wanderley DE SOUZA ◽  
Marlene BENCHIMOL

Cytoplasmic pH (pHi) regulation was studied in Toxoplasma gondii tachyzoites by using the fluorescent dye 2ʹ,7ʹ-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Their mean baseline pHi (7.07±0.06; n = 5) was not significantly affected in the absence of extracellular Na+, K+ or HCO3- but was significantly decreased in a dose-dependent manner by low concentrations of N,Nʹ-dicyclohexylcarbodi-imide (DCCD), N-ethylmaleimide (NEM) or bafilomycin A1. Bafilomycin A1 also inhibited the recovery of tachyzoite pHi after an acid load with sodium propionate. Similar concentrations of DCCD, NEM and bafilomycin A1 produced depolarization of the plasma membrane potential as measured with bis-(1,3-diethylthiobarbituric)trimethineoxonol (bisoxonol), and DCCD prevented the hyperpolarization that accompanies acid extrusion after the addition of propionate, in agreement with the electrogenic nature of this pump. Confocal laser scanning microscopy indicated that, in addition to being located in cytoplasmic vacuoles, the vacuolar (V)-H+-ATPase of T. gondii tachyzoites is also located in the plasma membrane. Surface localization of the V-H+-ATPase was confirmed by experiments using biotinylation of cell surface proteins and immunoprecipitation with antibodies against V-H+-ATPases. Taken together, the results are consistent with the presence of a functional V-H+-ATPase in the plasma membrane of these intracellular parasites and with an important role of this enzyme in the regulation of pHi homoeostasis in these cells.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 421 ◽  
Author(s):  
Dominik Harant ◽  
Ingeborg Lang

Plasmolysis is usually introduced to cell biology students as a tool to illustrate the plasma membrane: hypertonic solutions cause the living protoplast to shrink by osmotic water loss; hence, it detaches from the surrounding cell wall. What happens, however, with the subcellular structures in the cell cortex during this process of turgor loss? Here, we investigated the cortical endoplasmic reticulum (ER) in moss protonema cells of Physcomitrella patens in a cell line carrying a transgenic ER marker (GFP-HDEL). The plasma membrane was labelled simultaneously with the fluorescent dye FM4-64 to achieve structural separation. By placing the protonemata in a hypertonic mannitol solution (0.8 M), we were able to follow the behaviour of the cortical ER and the protoplast during plasmolysis by confocal laser scanning microscopy (CLSM). The protoplast shape and structural changes of the ER were further examined after depolymerisation of actin microfilaments with latrunculin B (1 µM). In its natural state, the cortical ER is a dynamic network of fine tubes and cisternae underneath the plasma membrane. Under acute and long-term plasmolysis (up to 45 min), changes in the protoplast form and the cortical ER, as well as the formation of Hechtian strands and Hechtian reticula, were observed. The processing of the high-resolution z-scans allowed the creation of 3D models and gave detailed insight into the ER of living protonema cells before, during and after plasmolysis.


Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1779-1789 ◽  
Author(s):  
Anamaris M. Colberg-Poley ◽  
Mital B. Patel ◽  
Darwin P. P. Erezo ◽  
Jay E. Slater

The human cytomegalovirus (HCMV) UL36–38 immediate-early (IE) locus encodes the UL37 exon 1 (pUL37x1) and UL37 (gpUL37) regulatory proteins, which have anti-apoptotic activities. pUL37x1 shares its entire sequence, including a hydrophobic leader and an acidic domain, with the exception of one residue, with the amino terminus of gpUL37. gpUL37 has, in addition, unique N-linked glycosylation, transmembrane and cytosolic domains. A rabbit polyvalent antiserum was generated against residues 27–40 in the shared amino-terminal domain and a mouse polyvalent antiserum was generated against the full-length protein to study trafficking of individual UL37 proteins in human cells that transiently expressed gpUL37 or pUL37x1. Co-localization studies by confocal laser scanning microscopy detected trafficking of gpUL37 and pUL37x1 from the endoplasmic reticulum to the Golgi apparatus in permissive U373 cells and in human diploid fibroblasts (HFF). Trafficking of gpUL37 to the cellular plasma membrane was detected in unfixed HFF cells. FLAG-tagged gpUL37 trafficked similarly through the secretory apparatus to the plasma membrane. By using confocal microscopy and immunoblotting of fractionated cells, gpUL37 and pUL37x1 were found to co-localize with mitochondria in human cells. This unconventional dual trafficking pattern through the secretory apparatus and to mitochondria is novel for herpesvirus IE regulatory proteins.


2016 ◽  
Vol 22 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Martina Laňková ◽  
Jana Humpolíčková ◽  
Stanislav Vosolsobě ◽  
Zdeněk Cit ◽  
Jozef Lacek ◽  
...  

AbstractA number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.


2000 ◽  
Vol 278 (2) ◽  
pp. C277-C291 ◽  
Author(s):  
Anne Lynn B. Langloh ◽  
Bakhrom Berdiev ◽  
Hong-Long Ji ◽  
Kent Keyser ◽  
Bruce A. Stanton ◽  
...  

The epithelial Na+channel (ENaC) is a low-conductance channel that is highly selective for Na+ and Li+ over K+ and impermeable to anions. The molecular basis underlying these conduction properties is not well known. Previous studies with the ENaC subunits demonstrated that the M2 region of α-ENaC is critical to channel function. Here we examine the effects of reversing the negative charges of highly conserved amino acids in α-subunit human ENaC (α-hENaC) M1 and M2 domains. Whole cell and single-channel current measurements indicated that the M2 mutations E568R, E571R, and D575R significantly decreased channel conductance but did not affect Na+:K+permeability. We observed no functional perturbations from the M1 mutation E108R. Whole cell amiloride-sensitive current recorded from oocytes injected with the M2 α-hENaC mutants along with wild-type (wt) β- and γ-hENaC was low (46–93 nA) compared with the wt channel (1–3 μA). To determine whether this reduced macroscopic current resulted from a decreased number of mutant channels at the plasma membrane, we coexpressed mutant α-hENaC subunits with green fluorescent protein-tagged β- and γ-subunits. Confocal laser scanning microscopy of oocytes demonstrated that plasma membrane localization of the mutant channels was the same as that of wt. These experiments demonstrate that acidic residues in the second transmembrane domain of α-hENaC affect ion permeation and are thus critical components of the conductive pore of ENaC.


Microbiology ◽  
2004 ◽  
Vol 150 (5) ◽  
pp. 1183-1190 ◽  
Author(s):  
D. Lloyd ◽  
J. C. Harris ◽  
G. A. Biagini ◽  
M. R. Hughes ◽  
S. Maroulis ◽  
...  

The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC4(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were Giardia intestinalis, Trichomonas vaginalis, Tritrichomonas foetus, Hexamita inflata and Mastigamoeba punctachora. Under conditions where they exhibit normal vitality, these organisms exclude DiBAC4(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O2-sensitive organisms and allows DiBAC4(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.


2001 ◽  
Vol 281 (3) ◽  
pp. F546-F556 ◽  
Author(s):  
Alok Shukla ◽  
Henrik Hager ◽  
Thomas Juhl Corydon ◽  
Andrew J. Bean ◽  
Ronald Dahl ◽  
...  

The vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct is likely mediated by vesicle-targeting proteins ( N-ethylmaleimide-sensitive factor attachment protein receptors). Hrs-2 is an ATPase believed to have a modulatory role in regulated exocytosis. To examine whether Hrs-2 is expressed in rat kidney, we carried out RT-PCR combined with DNA sequence analysis and Northern blotting using a digoxigenin-labeled Hrs-2 RNA probe. RT-PCR and Northern blotting revealed that Hrs-2 mRNA is localized in all zones of rat kidney. The presence of Hrs-2 protein in rat kidney was confirmed by immunoblotting, revealing a 115-kDa protein in kidney and brain membrane fractions corresponding to the expected molecular size of Hrs-2. Immunostaining and confocal laser scanning microscopy of LLC-PK1 cells (a porcine proximal tubule cell line) transfected with Hrs-2 DNA confirmed the specificity of the antibody and revealed that Hrs-2 is mainly localized in intracellular compartments, including cathepsin D-containing lysosomal/endosomal compartments. The cellular and subcellular localization of Hrs-2 in rat kidney was examined by immunocytochemistry and confocal laser scanning microscopy. Hrs-2 immunoreactivity was observed in collecting duct principal cells, and weaker labeling was detected in other nephron segments. The labeling was predominantly present in intracellular vesicles, but labeling was also observed in the apical plasma membrane domains of some cells. Colabeling with AQP2 revealed colocalization in vesicles and apical plasma membrane domains, suggesting a role for Hrs-2 in regulated AQP2 trafficking.


2008 ◽  
Vol 294 (2) ◽  
pp. C402-C412 ◽  
Author(s):  
Renate J. Scheibe ◽  
Karsten Mundhenk ◽  
Tilman Becker ◽  
Janine Hallerdei ◽  
Abdul Waheed ◽  
...  

The subcellular localization of carbonic anhydrase (CA) IV and CA IX in mouse skeletal muscle fibers has been studied immunohistochemically by confocal laser scanning microscopy. CA IV has been found to be located on the plasma membrane as well as on the sarcoplasmic reticulum (SR) membrane. CA IX is not localized in the plasma membrane but in the region of the t-tubular (TT)/terminal SR membrane. CA IV contributes 20% and CA IX 60% to the total CA activity of SR membrane vesicles isolated from mouse skeletal muscles. Our aim was to examine whether SR CA IV and TT/SR CA IX affect muscle contraction. Isolated fiber bundles of fast-twitch extensor digitorum longus and slow-twitch soleus muscle from mouse were investigated for isometric twitch and tetanic contractions and by a fatigue test. The muscle functions of CA IV knockout (KO) fibers and of CA IX KO fibers do not differ from the function of wild-type (WT) fibers. Muscle function of CA IV/XIV double KO mice unexpectedly shows a decrease in rise and relaxation time and in force of single twitches. In contrast, the CA inhibitor dorzolamide, whether applied to WT or to double KO muscle fibers, leads to a significant increase in rise time and force of twitches. It is concluded that the function of mouse skeletal muscle fibers expressing three membrane-associated CAs, IV, IX, and XIV, is not affected by the lack of one isoform but is possibly affected by the lack of all three CAs, as indicated by the inhibition studies.


Sign in / Sign up

Export Citation Format

Share Document