Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

2016 ◽  
Vol 22 (2) ◽  
pp. 290-299 ◽  
Author(s):  
Martina Laňková ◽  
Jana Humpolíčková ◽  
Stanislav Vosolsobě ◽  
Zdeněk Cit ◽  
Jozef Lacek ◽  
...  

AbstractA number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

2018 ◽  
Vol 24 (S1) ◽  
pp. 1356-1357
Author(s):  
S. Makaremi ◽  
S. Ranjit ◽  
M.A. Digman ◽  
E. Gratton ◽  
D. M.E. Bowdish ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sara Makaremi ◽  
Markus Rose ◽  
Suman Ranjit ◽  
Michelle A. Digman ◽  
Dawn M. E. Bowdish ◽  
...  

Abstract The diffusion of membrane receptors is central to many biological processes, such as signal transduction, molecule translocation, and ion transport, among others; consequently, several advanced fluorescence microscopy techniques have been developed to measure membrane receptor mobility within live cells. The membrane-anchored receptor cluster of differentiation 14 (CD14) and the transmembrane toll-like receptor 2 (TLR2) are important receptors in the plasma membrane of macrophages that activate the intracellular signaling cascade in response to pathogenic stimuli. The aim of the present work was to compare the diffusion coefficients of CD14 and TLR2 on the apical and basal membranes of macrophages using two fluorescence-based methods: raster image correlation spectroscopy (RICS) and single particle tracking (SPT). In the basal membrane, the diffusion coefficients obtained from SPT and RICS were found to be comparable and revealed significantly faster diffusion of CD14 compared with TLR2. In addition, RICS showed that the diffusion of both receptors was significantly faster in the apical membrane than in the basal membrane, suggesting diffusion hindrance by the adhesion of the cells to the substrate. This finding highlights the importance of selecting the appropriate membrane (i.e., basal or apical) and corresponding method when measuring receptor diffusion in live cells. Accurately knowing the diffusion coefficient of two macrophage receptors involved in the response to pathogen insults will facilitate the study of changes that occur in signaling in these cells as a result of aging and disease.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 770
Author(s):  
Patrick M. Perrigue ◽  
Richard A. Murray ◽  
Angelika Mielcarek ◽  
Agata Henschke ◽  
Sergio E. Moya

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug’s delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.


2013 ◽  
Vol 94 (3) ◽  
pp. 682-686 ◽  
Author(s):  
Kazuya Ishikawa ◽  
Kensaku Maejima ◽  
Ken Komatsu ◽  
Osamu Netsu ◽  
Takuya Keima ◽  
...  

Fig mosaic virus (FMV), a member of the newly formed genus Emaravirus, is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 196
Author(s):  
Shravan Kousik ◽  
Diane Sipp ◽  
Karina Abitaev ◽  
Yawen Li ◽  
Thomas Sottmann ◽  
...  

Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).


1998 ◽  
Vol 330 (2) ◽  
pp. 853-860 ◽  
Author(s):  
N. J. Silvia MORENO ◽  
Li ZHONG ◽  
Hong-Gang LU ◽  
Wanderley DE SOUZA ◽  
Marlene BENCHIMOL

Cytoplasmic pH (pHi) regulation was studied in Toxoplasma gondii tachyzoites by using the fluorescent dye 2ʹ,7ʹ-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Their mean baseline pHi (7.07±0.06; n = 5) was not significantly affected in the absence of extracellular Na+, K+ or HCO3- but was significantly decreased in a dose-dependent manner by low concentrations of N,Nʹ-dicyclohexylcarbodi-imide (DCCD), N-ethylmaleimide (NEM) or bafilomycin A1. Bafilomycin A1 also inhibited the recovery of tachyzoite pHi after an acid load with sodium propionate. Similar concentrations of DCCD, NEM and bafilomycin A1 produced depolarization of the plasma membrane potential as measured with bis-(1,3-diethylthiobarbituric)trimethineoxonol (bisoxonol), and DCCD prevented the hyperpolarization that accompanies acid extrusion after the addition of propionate, in agreement with the electrogenic nature of this pump. Confocal laser scanning microscopy indicated that, in addition to being located in cytoplasmic vacuoles, the vacuolar (V)-H+-ATPase of T. gondii tachyzoites is also located in the plasma membrane. Surface localization of the V-H+-ATPase was confirmed by experiments using biotinylation of cell surface proteins and immunoprecipitation with antibodies against V-H+-ATPases. Taken together, the results are consistent with the presence of a functional V-H+-ATPase in the plasma membrane of these intracellular parasites and with an important role of this enzyme in the regulation of pHi homoeostasis in these cells.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6149-6164
Author(s):  
Alan Dickson ◽  
Bernard Dawson

An approach combining maps of wood morphology and digital image correlation was developed to investigate the drying of Eucalyptus nitens wood. Maps of morphological features (vessel and ray distribution) and cell cross-section dimensions were acquired by confocal laser scanning microscopy. Shrinkage maps were generated using digital image correlation. There were statistically significant correlations between shrinkage/collapse and wood morphology at two levels. Firstly, there were positional relationships, with for example, both radial and tangential shrinkage increasing with increasing distance from vessel elements. Secondly, there were dimensional relationships, such as, cells with large perimeters (relative to their wall thickness) on average showing greater shrinkage. Generally, the positional relationships dominated the dimensional relationships. Detailed analysis over large areas allows for a fuller analysis of the interrelationship between wood morphology and drying shrinkage and collapse.


Sign in / Sign up

Export Citation Format

Share Document