scholarly journals Role of the circadian clock "Death-Loop" in the DNA damage response underpinning cancer treatment resistance

2022 ◽  
Author(s):  
Ninel Miriam Vainshelbaum ◽  
Kristine Salmina ◽  
Bogdan I Gerashchenko ◽  
Marija Lazovska ◽  
Pawel Zayakin ◽  
...  

The Circadian Clock (CC) drives the normal cell cycle and reciprocally regulates telomere elongation. However, it can be deregulated in cancer, embryonic stem cells (ESC) and the early embryo. Here, its role in the resistance of cancer cells to genotoxic treatments was assessed in relation to whole-genome duplication (WGD) and telomere regulation. We first evaluated the DNA damage response of polyploid cancer cells and observed a similar impact on the cell cycle to that seen in ESC - overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, and coupling telomere erosion to accelerated cell senescence, favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Next, we revealed a positive correlation between cancer WGD and deregulation of CC assessed by bioinformatics on 11 primary cancer datasets (rho=0.83; p<0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by recombination and return their depolyploidised mitotic offspring to TERT-dependent telomere regulation. Through depolyploidisation and the CC "death loop", the telomeres and Hayflick limit count are thus again renewed. This mechanism along with similar inactivity of the CC in early embryos supports a life-cycle (embryonic) concept of cancer.

2019 ◽  
Vol 19 (15) ◽  
pp. 1846-1854 ◽  
Author(s):  
Mustafa Ergul ◽  
Filiz Bakar-Ates

Background: As a member of serine/threonine-protein kinase, Polo‐like kinase 1 (PLK1) plays crucial roles during mitosis and also contributes to DNA damage response and repair. PLK1 is aberrantly expressed in many types of tumor cells and increased levels of PLK1 is closely related to tumorigenesis and poor clinical outcomes. Therefore, PLK1 is accepted as one of the potential targets for the discovery of novel anticancer agents. The objective of this study was to assess the cytotoxic effects of a novel PLK1 inhibitor, RO3280, against MCF-7, human breast cancer cells; HepG2, human hepatocellular carcinoma cells; and PC3, human prostate cancer cells, as well as non-cancerous L929 fibroblast cells. Methods: Antiproliferative activity of RO3280 was examined using the XTT assay. Flow cytometry assay was performed to evaluate cell cycle distribution, apoptosis, multicaspase activity, mitochondrial membrane potential, and DNA damage response. We also examined apoptosis with fluorescence imaging studies. Results: According to the results of XTT assay, although RO3280 displayed potent cytotoxicity in all treated cancer cells, the most sensitive cell line was identified as MCF-7 cells that were selected for further studies. The compound induced a cell cycle arrest in MCF-7 cells at G2/M phase and significantly induced apoptosis, multicaspase activity, DNA damage response, and decreased mitochondrial membrane potential of MCF-7 cells. Conclusion: Overall, RO3280 induces anticancer effects promoted mainly by DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Further studies are needed to assess its usability as an anticancer agent with specific cancer types.


APOPTOSIS ◽  
2014 ◽  
Vol 19 (9) ◽  
pp. 1389-1398 ◽  
Author(s):  
Feng-Ze Wang ◽  
Hong-rong Fei ◽  
Ying-Jie Cui ◽  
Ying-Kun Sun ◽  
Zhao-Mei Li ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1548
Author(s):  
Andy Chun Hang Chen ◽  
Qian Peng ◽  
Sze Wan Fong ◽  
Kai Chuen Lee ◽  
William Shu Biu Yeung ◽  
...  

Pluripotent stem cells (PSCs) hold great promise in cell-based therapy because of their pluripotent property and the ability to proliferate indefinitely. Embryonic stem cells (ESCs) derived from inner cell mass (ICM) possess unique cell cycle control with shortened G1 phase. In addition, ESCs have high expression of homologous recombination (HR)-related proteins, which repair double-strand breaks (DSBs) through HR or the non-homologous end joining (NHEJ) pathway. On the other hand, the generation of induced pluripotent stem cells (iPSCs) by forced expression of transcription factors (Oct4, Sox2, Klf4, c-Myc) is accompanied by oxidative stress and DNA damage. The DNA repair mechanism of DSBs is therefore critical in determining the genomic stability and efficiency of iPSCs generation. Maintaining genomic stability in PSCs plays a pivotal role in the proliferation and pluripotency of PSCs. In terms of therapeutic application, genomic stability is the key to reducing the risks of cancer development due to abnormal cell replication. Over the years, we and other groups have identified important regulators of DNA damage response in PSCs, including FOXM1, SIRT1 and PUMA. They function through transcription regulation of downstream targets (P53, CDK1) that are involved in cell cycle regulations. Here, we review the fundamental links between the PSC-specific HR process and DNA damage response, with a focus on the roles of FOXM1 and SIRT1 on maintaining genomic integrity.


Stem Cells ◽  
2012 ◽  
Vol 30 (9) ◽  
pp. 1901-1910 ◽  
Author(s):  
Nevila Hyka-Nouspikel ◽  
Joëlle Desmarais ◽  
Paul J. Gokhale ◽  
Mark Jones ◽  
Mark Meuth ◽  
...  

2019 ◽  
Vol 105 (3) ◽  
pp. 839-853
Author(s):  
Aglaia Kyrilli ◽  
David Gacquer ◽  
Vincent Detours ◽  
Anne Lefort ◽  
Frédéric Libert ◽  
...  

Abstract Background The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. Methods Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. Results Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. Conclusions TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


Sign in / Sign up

Export Citation Format

Share Document