scholarly journals A bacterial GW-effector targets Arabidopsis AGO1 to promote pathogenicity and induces Effector-triggered immunity by disrupting AGO1 homeostasis

2017 ◽  
Author(s):  
Odon Thiébeauld ◽  
Magali Charvin ◽  
Meenu Singla Rastogi ◽  
Fan Yang ◽  
Dominique Pontier ◽  
...  

SUMMARYPseudomonas syringae type-III effectors were previously found to suppress the Arabidopsis miRNA pathway through elusive mechanisms. Here, we first show that HopT1-1 effector promotes pathogenicity by suppressing the Arabidopsis AGO1-dependent microRNA (miRNA) pathway. We further demonstrate that HopT1-1 interacts with, and suppresses the activity of, AGO1 through conserved glycine/tryptophan-(GW) motifs. HopT1-1 dampens PAMP-Triggered-Immunity (PTI) in a GW-dependent manner and its presence mimics the impaired PTI responses, which were also observed in ago1 mutants. In addition, the silencing suppression activity of HopT1-1 induces Effector-Triggered-Immunity (ETI), which is correlated with an over-accumulation of silencing factors that are controlled by miRNAs, including AGO1. Remarkably, alleviating miR168-directed silencing of AGO1 was sufficient to trigger an ETI-like response, orchestrated by typical disease resistance-immune signaling factors, suggesting that HopT1-1-induced perturbation of AGO1 homeostasis is a trigger of ETI activation. In summary, this study reports for the first time a strategy used by a bacterial effector to directly target an AGO protein and on how plants perceive its silencing suppression activity to trigger a host counter-counter defense.

2009 ◽  
Vol 22 (9) ◽  
pp. 1069-1080 ◽  
Author(s):  
Ming Guo ◽  
Fang Tian ◽  
Yashitola Wamboldt ◽  
James R. Alfano

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern–triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.


2021 ◽  
Author(s):  
David A Baltrus ◽  
Qian Feng ◽  
Brian H Kvitko

Integrative Conjugative Elements (ICEs) are replicons that can insert and excise from chromosomal locations in a site specific manner, can conjugate across strains, and which often carry a variety of genes useful for bacterial growth and survival under specific conditions. Although ICEs have been identified and vetted within certain clades of the agricultural pathogen Pseudomonas syringae, the impact of ICE carriage and transfer across the entire P. syringae species complex remains underexplored. Here we identify and vet an ICE (PmaICE-DQ) from P. syringae pv. maculicola ES4326, a strain commonly used for laboratory virulence experiments, demonstrate that this element can excise and conjugate across strains, and contains loci encoding multiple type III effector proteins. Moreover, genome context suggests that another ICE (PmaICE-AOAB) is highly similar in comparison with and found immediately adjacent to PmaICE-DQ within the chromosome of strain ES4326, and also contains multiple type III effectors. Lastly, we present passage data from in planta experiments that suggests that genomic plasticity associated with ICEs may enable strains to more rapidly lose type III effectors that trigger R-gene mediated resistance in comparison to strains where nearly isogenic effectors are not present in ICEs. Taken together, our study sheds light on a set of ICE elements from P. syringae pv. maculicola ES4326 and highlights how genomic context may lead to different evolutionary dynamics for shared virulence genes between strains.


2009 ◽  
Vol 22 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Ayako Furutani ◽  
Minako Takaoka ◽  
Harumi Sanada ◽  
Yukari Noguchi ◽  
Takashi Oku ◽  
...  

Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB– and HpaP– mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.


Plant Disease ◽  
2015 ◽  
Vol 99 (4) ◽  
pp. 527-534 ◽  
Author(s):  
Lisa A. Jones ◽  
Surya Saha ◽  
Alan Collmer ◽  
Christine D. Smart ◽  
Magdalen Lindeberg

A severe outbreak of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, occurred in central New York in 2009. Isolate 09150, collected from this outbreak and subsequently named NYS-T1, was found to be highly virulent on tomato. To better understand the relationship of 09150 to other P. syringae strains and develop a diagnostic assay for aggressive strains of this pathogen, the 09150 genome was sequenced. Genome comparison revealed it to be highly similar to a previously sequenced isolate, T1. Genetic factors linked to host interaction including type III effectors, toxin biosynthetic genes, and elicitors of host innate immunity were identified. Type III effector repertoires were compared with other strains in the high virulence T1-like subgroup and lower virulence DC3000/P. syringae pv. maculicola subgroup within P. syringae phylogenetic Group I. Primers for conventional PCR were developed using sequences for avrA, hopW, conserved in the former subgroup and hopN, present in the latter. These were tested on isolates in the two subgroups, other pseudomonads, and other bacterial pathogens of tomato. Primers developed for avaA and hopW were diagnostic for more virulent strains of P. syringae pv. tomato while primers for hopN were diagnostic for P. syringae pv. tomato DC3000 and related P. syringe pv. maculicola strains. Primers designed against hopR distinguished both of these P. syringae subgroups from other P. syringae strains.


2012 ◽  
Vol 25 (7) ◽  
pp. 941-953 ◽  
Author(s):  
Montserrat Solé ◽  
Crina Popa ◽  
Oriane Mith ◽  
Kee Hoon Sohn ◽  
Jonathan D. G. Jones ◽  
...  

We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophan-arginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (Δawr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.


2010 ◽  
Vol 23 (7) ◽  
pp. 927-939 ◽  
Author(s):  
Xin Deng ◽  
Lefu Lan ◽  
Yanmei Xiao ◽  
Megan Kennelly ◽  
Jian-Min Zhou ◽  
...  

The two-component system RhpRS was identified in Pseudomonas syringae as a regulator of the genes encoding the type III secretion system and type III effector proteins (together called the T3 genes). In the absence of the sensor kinase RhpS, the response regulator RhpR represses the induction of the T3 gene regulatory cascade consisting of hrpRS, hrpL, and the T3 genes in a phosphorylation-dependent manner. The repressor activity of RhpR is inhibited by RhpS, which presumably acts as a phosphatase under the T3 gene inducing conditions. Here, we show that RhpR binds and induces its own promoter in a phosphorylation-dependent manner. Deletion and mutagenesis analyses revealed an inverted repeat (IR) element, GTATC-N6-GATAC, in the rhpR promoter that confers the RhpR-dependent induction. Computational search of the P. syringae genomes for the putative IR elements and Northern blot analysis of the genes with a putative IR element in the promoter region uncovered five genes that were upregulated and two genes that were downregulated in an RhpR-dependent manner. Two genes that were strongly induced by RhpR were assayed for the IR element activity in gene regulation and, in both cases, the IR element mediated the RhpR-dependent gene induction. Chromatin immunoprecipitation assays indicated that RhpR binds the promoters containing a putative IR element but not the hrpR and hrpL promoters that do not have an IR element, suggesting that RhpR indirectly regulates the transcriptional cascade of hrpRS, hrpL, and the T3 genes.


2012 ◽  
Vol 195 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Jay N. Worley ◽  
Alistair B. Russell ◽  
Aaron G. Wexler ◽  
Philip A. Bronstein ◽  
Brian H. Kvitko ◽  
...  

ABSTRACTPseudomonas syringaepv. tomato DC3000 produces the phytotoxin coronatine, a major determinant of the leaf chlorosis associated with DC3000 pathogenesis. The DC3000 PSPTO4723 (cmaL) gene is located in a genomic region encoding type III effectors; however, it promotes chlorosis in the model plantNicotiana benthamianain a manner independent of type III secretion. Coronatine is produced by the ligation of two moieties, coronafacic acid (CFA) and coronamic acid (CMA), which are produced by biosynthetic pathways encoded in separate operons. Cross-feeding experiments, performed inN. benthamianawithcfa,cma, andcmaLmutants, implicate CmaL in CMA production. Furthermore, analysis of bacterial supernatants under coronatine-inducing conditions revealed that mutants lacking either thecmaoperon orcmaLaccumulate CFA rather than coronatine, supporting a role for CmaL in the regulation or biosynthesis of CMA. CmaL does not appear to regulate CMA production, since the expression of proteins with known roles in CMA production is unaltered incmaLmutants. Rather, CmaL is needed for the first step in CMA synthesis, as evidenced by the fact that wild-type levels of coronatine production are restored to a ΔcmaLmutant when it is supplemented with 50 μg/mll-allo-isoleucine, the starting unit for CMA production.cmaLis found in all other sequencedP. syringaestrains with coronatine biosynthesis genes. This characterization of CmaL identifies a critical missing factor in coronatine production and provides a foundation for further investigation of a member of the widespread DUF1330 protein family.


2015 ◽  
Vol 28 (2) ◽  
pp. 180-194 ◽  
Author(s):  
William Stork ◽  
Jung-Gun Kim ◽  
Mary Beth Mudgett

Many phytopathogenic type III secretion effector proteins (T3Es) have been shown to target and suppress plant immune signaling but perturbation of the plant immune system by T3Es can also elicit a plant response. XopX is a “core” Xanthomonas T3E that contributes to growth and symptom development during Xanthomonas euvesicatoria infection of tomato but its functional role is undefined. We tested the effect of XopX on several aspects of plant immune signaling. XopX promoted ethylene production and plant cell death (PCD) during X. euvesicatoria infection of susceptible tomato and in transient expression assays in Nicotiana benthamiana, which is consistent with its requirement for the development of X. euvesicatoria-induced disease symptoms. Additionally, although XopX suppressed flagellin-induced reactive oxygen species, it promoted the accumulation of pattern-triggered immunity (PTI) gene transcripts. Surprisingly, XopX coexpression with other PCD elicitors resulted in delayed PCD, suggesting antagonism between XopX-dependent PCD and other PCD pathways. However, we found no evidence that XopX contributed to the suppression of effector-triggered immunity during X. euvesicatoria–tomato interactions, suggesting that XopX's primary virulence role is to modulate PTI. These results highlight the dual role of a core Xanthomonas T3E in simultaneously suppressing and activating plant defense responses.


Sign in / Sign up

Export Citation Format

Share Document