scholarly journals Identifying the phenotypic effect of rare variants by including between-pedigree coancestry in variance components linkage analysis

2017 ◽  
Author(s):  
J.E. Hicks ◽  
M. A. Province

AbstractThe contribution of rare variants to disease burden has become an important focus in genetic epidemiology. These effects are difficult to detect in population-based datasets, and as a result, interest in family-based study designs has resurfaced. Linkage analysis tools will need to be updated to accommodate the scale of data generated by modern genotyping and sequencing technologies.In conventional linkage analysis individuals in different pedigrees are assumed to be independent of each other. However, cryptic relatedness is often present in populations and haplotypes that harbor rare variants may be shared between pedigrees as well as within them.With millions of polymorphisms, Identity-by-descent (IBD) states across the genome can now be inferred without use of pedigree information. This is done by identifying long runs of identical-by-state genotypes which are unlikely to arise without IBD. Previously, IBD had to be estimated in pedigrees from recombination events in a sparse set of markers.We present a method for variance-components linkage that can incorporate large number of markers and allows for between-pedigree relatedness. We replace the IBD matrix generated from pedigree-based analysis with one generated from a genotype-based method. All pedigrees in a dataset are considered jointly, allowing between-pedigree IBD to be included in the model.In simulated data, we show that power is increased in the scenario when there is a haplotype shared IBD between members of different pedigrees. If there is no between-pedigree IBD, the analysis reduces to conventional variance-components analysis. By determining IBD states by long runs of dense IBS genotypes, linkage signals can be determined from their physical position, allowing more precise localization.

2021 ◽  
Vol 9 ◽  
Author(s):  
Anwarul Karim ◽  
Clara Sze-Man Tang ◽  
Paul Kwong-Hang Tam

Hirschsprung disease (HSCR) is the leading cause of neonatal functional intestinal obstruction. It is a rare congenital disease with an incidence of one in 3,500–5,000 live births. HSCR is characterized by the absence of enteric ganglia in the distal colon, plausibly due to genetic defects perturbing the normal migration, proliferation, differentiation, and/or survival of the enteric neural crest cells as well as impaired interaction with the enteric progenitor cell niche. Early linkage analyses in Mendelian and syndromic forms of HSCR uncovered variants with large effects in major HSCR genes including RET, EDNRB, and their interacting partners in the same biological pathways. With the advances in genome-wide genotyping and next-generation sequencing technologies, there has been a remarkable progress in understanding of the genetic basis of HSCR in the past few years, with common and rare variants with small to moderate effects being uncovered. The discovery of new HSCR genes such as neuregulin and BACE2 as well as the deeper understanding of the roles and mechanisms of known HSCR genes provided solid evidence that many HSCR cases are in the form of complex polygenic/oligogenic disorder where rare variants act in the sensitized background of HSCR-associated common variants. This review summarizes the roadmap of genetic discoveries of HSCR from the earlier family-based linkage analyses to the recent population-based genome-wide analyses coupled with functional genomics, and how these discoveries facilitated our understanding of the genetic architecture of this complex disease and provide the foundation of clinical translation for precision and stratified medicine.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Claudio Toma ◽  
Alex D. Shaw ◽  
Anna Heath ◽  
Kerrie D. Pierce ◽  
Philip B. Mitchell ◽  
...  

Background: Bipolar disorder is a highly heritable psychiatric condition for which specific genetic factors remain largely unknown. In the present study, we used combined whole-exome sequencing and linkage analysis to identify risk loci and dissect the contribution of common and rare variants in families with a high density of illness. Methods: Overall, 117 participants from 15 Australian extended families with bipolar disorder (72 with affective disorder, including 50 with bipolar disorder type I or II, 13 with schizoaffective disorder–manic type and 9 with recurrent unipolar disorder) underwent whole-exome sequencing. We performed genome-wide linkage analysis using MERLIN and conditional linkage analysis using LAMP. We assessed the contribution of potentially functional rare variants using a genebased segregation test. Results: We identified a significant linkage peak on chromosome 10q11-q21 (maximal single nucleotide polymorphism = rs10761725; exponential logarithm of the odds [LODexp] = 3.03; empirical p = 0.046). The linkage interval spanned 36 protein-coding genes, including a gene associated with bipolar disorder, ankyrin 3 (ANK3). Conditional linkage analysis showed that common ANK3 risk variants previously identified in genome-wide association studies — or variants in linkage disequilibrium with those variants — did not explain the linkage signal (rs10994397 LOD = 0.63; rs9804190 LOD = 0.04). A family-based segregation test with 34 rare variants from 14 genes under the linkage interval suggested rare variant contributions of 3 brain-expressed genes: NRBF2 (p = 0.005), PCDH15 (p = 0.002) and ANK3 (p = 0.014). Limitations: We did not examine non-coding variants, but they may explain the remaining linkage signal. Conclusion: Combining family-based linkage analysis with next-generation sequencing data is effective for identifying putative disease genes and specific risk variants in complex disorders. We identified rare missense variants in ANK3, PCDH15 and NRBF2 that could confer disease risk, providing valuable targets for functional characterization.


2019 ◽  
Author(s):  
Christina Nieuwoudt ◽  
Angela Brooks-Wilson ◽  
Jinko Graham

1AbstractSummaryFamily-based studies have several advantages over case-control studies for finding causal rare variants for a disease; these include increased power, smaller sample size requirements, and improved detection of sequencing errors. However, collecting suitable families and compiling their data is time-consuming and expensive. To evaluate methodology to identify causal rare variants in family-based studies, one can use simulated data. For this purpose we present the R package SimRVSequences. Users supply a sample of pedigrees and single-nucleotide variant data from a sample of unrelated individuals representing the pedigree founders. Users may also model genetic heterogeneity among families. For ease of use, SimRVSequences offers methods to import and format single-nucleotide variant data and pedigrees from existing software.Availability and ImplementationSimRVSequences is available as a library for R≥ 3.5.0 on the comprehensive R archive network.


2020 ◽  
Vol 07 (03) ◽  
pp. 075-079
Author(s):  
Mahamad Irfanulla Khan ◽  
Prashanth CS

AbstractCleft lip with or without cleft palate (CL/P) is one of the most common congenital malformations in humans involving various genetic and environmental risk factors. The prevalence of CL/P varies according to geographical location, ethnicity, race, gender, and socioeconomic status, affecting approximately 1 in 800 live births worldwide. Genetic studies aim to understand the mechanisms contributory to a phenotype by measuring the association between genetic variants and also between genetic variants and phenotype population. Genome-wide association studies are standard tools used to discover genetic loci related to a trait of interest. Genetic association studies are generally divided into two main design types: population-based studies and family-based studies. The epidemiological population-based studies comprise unrelated individuals that directly compare the frequency of genetic variants between (usually independent) cases and controls. The alternative to population-based studies (case–control designs) includes various family-based study designs that comprise related individuals. An example of such a study is a case–parent trio design study, which is commonly employed in genetics to identify the variants underlying complex human disease where transmission of alleles from parents to offspring is studied. This article describes the fundamentals of case–parent trio study, trio design and its significances, statistical methods, and limitations of the trio studies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Alessandro Gialluisi ◽  
Mafalda Giovanna Reccia ◽  
Nicola Modugno ◽  
Teresa Nutile ◽  
Alessia Lombardi ◽  
...  

Abstract Background Parkinson’s disease (PD) is a neurodegenerative movement disorder affecting 1–5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. Methods The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). Results Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10− 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. Conclusions Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


2021 ◽  
pp. jmedgenet-2020-107471
Author(s):  
Pei Sze Ng ◽  
Rick ACM Boonen ◽  
Eldarina Wijaya ◽  
Chan Eng Chong ◽  
Milan Sharma ◽  
...  

BackgroundRare protein-truncating variants (PTVs) in partner and localiser of BRCA2 (PALB2) confer increased risk to breast cancer, but relatively few studies have reported the prevalence in South-East Asian populations. Here, we describe the prevalence of rare variants in PALB2 in a population-based study of 7840 breast cancer cases and 7928 healthy Chinese, Malay and Indian women from Malaysia and Singapore, and describe the functional impact of germline missense variants identified in this population.MethodsMutation testing was performed on germline DNA (n=15 768) using targeted sequencing panels. The functional impact of missense variants was tested in mouse embryonic stem cell based functional assays.ResultsPTVs in PALB2 were found in 0.73% of breast cancer patients and 0.14% of healthy individuals (OR=5.44; 95% CI 2.85 to 10.39, p<0.0001). In contrast, rare missense variants in PALB2 were not associated with increased risk of breast cancer. Whereas PTVs were associated with later stage of presentation and higher-grade tumours, no significant association was observed with missense variants in PALB2. However, two novel rare missense variants (p.L1027R and p.G1043V) produced unstable proteins and resulted in a decrease in homologous recombination-mediated repair of DNA double-strand breaks.ConclusionDespite genetic and lifestyle differences between Asian and other populations, the population prevalence of PALB2 PTVs and associated relative risk of breast cancer, are similar to those reported in European populations.


Sign in / Sign up

Export Citation Format

Share Document