scholarly journals Green-gradient based canopy segmentation: A multipurpose image mining model with potential use in crop phenotyping and canopy studies

2018 ◽  
Author(s):  
Abbas Haghshenas ◽  
Yahya Emam

AbstractEfficient quantification of the sophisticated shading patterns inside the 3D vegetation canopies may improve our understanding of canopy functions and status, which is possible now more than ever, thanks to the high-throughput phenotyping (HTP) platforms. In order to evaluate the option of quantitative characterization of shading patterns, a simple image mining technique named “green-gradient based canopy segmentation model (GSM)” was developed based on the relative variations in the level of RGB triplets under different illuminations. For this purpose, an archive of ground-based nadir images of heterogeneous wheat canopies (cultivar mixtures) was analyzed. The images were taken from experimental plots of a two-year field experiment conducted during 2014-15 and 2015-16 growing seasons in the semi-arid region of southern Iran. In GSM, the vegetation pixels were categorized into the maximum possible number of 255 groups based on their green levels. Subsequently, mean red and mean blue levels of each group were calculated and plotted against the green levels. It is evidenced that the yielded graph could be readily used for (i) identifying and characterizing canopies even as simple as one or two equation(s); (ii) classification of canopy pixels in accordance with the degree of exposure to sunlight; and (iii) accurately prediction of various quantitative properties of canopy including canopy coverage (CC), Normalized difference vegetation index (NDVI), canopy temperature, and also precise classification of experimental plots based on the qualitative characteristics such as subjecting to water and cold stresses, date of imaging, and time of irrigation. It seems that the introduced model may provide a multipurpose HTP platform and open new windows to canopy studies.


2012 ◽  
Vol 84 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Fábio M. Breunig ◽  
Lênio S. Galvão ◽  
Antônio R. Formaggio ◽  
José C.N. Epiphanio

Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI1640 and NDWI2120) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.



Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 561 ◽  
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Oleg Yakubailik ◽  
Vlad Soukhovolsky

Vegetation indices derived from remote sensing measurements are commonly used to describe and monitor vegetation. However, the same plant community can have a different NDVI (normalized difference vegetation index) depending on weather conditions, and this complicates classification of plant communities. The present study develops methods of classifying the types of plant communities based on long-term NDVI data (MODIS/Aqua). The number of variables is reduced by introducing two integrated parameters of the NDVI seasonal series, facilitating classification of the meadow, steppe, and forest plant communities in Siberia using linear discriminant analysis. The quality of classification conducted by using the markers characterizing NDVI dynamics during 2003–2017 varies between 94% (forest and steppe) and 68% (meadow and forest). In addition to determining phenological markers, canonical correlations have been calculated between the time series of the proposed markers and the time series of monthly average air temperatures. Based on this, each pixel with a definite plant composition can be characterized by only four values of canonical correlation coefficients over the entire period analyzed. By using canonical correlations between NDVI and weather parameters and employing linear discriminant analysis, one can obtain a highly accurate classification of the study plant communities.



Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 749
Author(s):  
Danielle L. Lacouture ◽  
Eben N. Broadbent ◽  
Raelene M. Crandall

Research Highlights: Fire-frequented savannas are dominated by plant species that regrow quickly following fires that mainly burn through the understory. To detect post-fire vegetation recovery in these ecosystems, particularly during warm, rainy seasons, data are needed on a small, temporal scale. In the past, the measurement of vegetation regrowth in fire-frequented systems has been labor-intensive, but with the availability of daily satellite imagery, it should be possible to easily determine vegetation recovery on a small timescale using Normalized Difference Vegetation Index (NDVI) in ecosystems with a sparse overstory. Background and Objectives: We explore whether it is possible to use NDVI calculated from satellite imagery to detect time-to-vegetation recovery. Additionally, we determine the time-to-vegetation recovery after fires in different seasons. This represents one of very few studies that have used satellite imagery to examine vegetation recovery after fire in southeastern U.S.A. pine savannas. We test the efficacy of using this method by examining whether there are detectable differences between time-to-vegetation recovery in subtropical savannas burned during different seasons. Materials and Methods: NDVI was calculated from satellite imagery approximately monthly over two years in a subtropical savanna with units burned during dry, dormant and wet, growing seasons. Results: Despite the availability of daily satellite images, we were unable to precisely determine when vegetation recovered, because clouds frequently obscured our range of interest. We found that, in general, vegetation recovered in less time after fire during the wet, growing, as compared to dry, dormant, season, albeit there were some discrepancies in our results. Although these general patterns were clear, variation in fire heterogeneity and canopy type and cover skewed NDVI in some units. Conclusions: Although there are some challenges to using satellite-derived NDVI, the availability of satellite imagery continues to improve on both temporal and spatial scales, which should allow us to continue finding new and efficient ways to monitor and model forests in the future.



Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1025 ◽  
Author(s):  
Jung-il Shin ◽  
Won-woo Seo ◽  
Taejung Kim ◽  
Joowon Park ◽  
Choong-shik Woo

Unmanned aerial vehicle (UAV)-based remote sensing has limitations in acquiring images before a forest fire, although burn severity can be analyzed by comparing images before and after a fire. Determining the burned surface area is a challenging class in the analysis of burn area severity because it looks unburned in images from aircraft or satellites. This study analyzes the availability of multispectral UAV images that can be used to classify burn severity, including the burned surface class. RedEdge multispectral UAV image was acquired after a forest fire, which was then processed into a mosaic reflectance image. Hundreds of samples were collected for each burn severity class, and they were used as training and validation samples for classification. Maximum likelihood (MLH), spectral angle mapper (SAM), and thresholding of a normalized difference vegetation index (NDVI) were used as classifiers. In the results, all classifiers showed high overall accuracy. The classifiers also showed high accuracy for classification of the burned surface, even though there was some confusion among spectrally similar classes, unburned pine, and unburned deciduous. Therefore, multispectral UAV images can be used to analyze burn severity after a forest fire. Additionally, NDVI thresholding can also be an easy and accurate method, although thresholds should be generalized in the future.



Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 192 ◽  
Author(s):  
Abdulwahab S. Shaibu ◽  
Clay Sneller ◽  
Babu N. Motagi ◽  
Jackline Chepkoech ◽  
Mercy Chepngetich ◽  
...  

In order to integrate genomics in breeding and development of drought-tolerant groundnut genotypes, identification of genomic regions/genetic markers for drought surrogate traits is essential. We used 3249 diversity array technology sequencing (DArTSeq) markers for a genetic analysis of 125 ICRISAT groundnut mini core collection evaluated in 2015 and 2017 for genome-wide marker-trait association for some physiological traits and to determine the magnitude of linkage disequilibrium (LD). Marker-trait association (MTA) analysis, probability values, and percent variation modelled by the markers were calculated using the GAPIT package via the KDCompute interface. The LD analysis showed that about 36% of loci pairs were in significant LD (p < 0.05 and r2 > 0.2) and 3.14% of the pairs were in complete LD. The MTAs studies revealed 20 significant MTAs (p < 0.001) with 11 markers. Four MTAs were identified for leaf area index, 13 for canopy temperature, one for chlorophyll content and two for normalized difference vegetation index. The markers explained 20.8% to 6.6% of the phenotypic variation observed. Most of the MTAs identified on the A subgenome were also identified on the respective homeologous chromosome on the B subgenome. This could be due to a common ancestor of the A and B genome which explains the linkage detected between markers lying on different chromosomes. The markers identified in this study can serve as useful genomic resources to initiate marker-assisted selection and trait introgression of groundnut for drought tolerance after further validation.



2018 ◽  
Vol 10 (12) ◽  
pp. 1953 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Mohammad El Hajj ◽  
Nicolas Baghdadi ◽  
Zohra Lili-Chabaane ◽  
...  

This paper presents a technique for the mapping of soil moisture and irrigation, at the scale of agricultural fields, based on the synergistic interpretation of multi-temporal optical and Synthetic Aperture Radar (SAR) data (Sentinel-2 and Sentinel-1). The Kairouan plain, a semi-arid region in central Tunisia (North Africa), was selected as a test area for this study. Firstly, an algorithm for the direct inversion of the Water Cloud Model (WCM) was developed for the spatialization of the soil water content between 2015 and 2017. The soil moisture retrieved from these observations was first validated using ground measurements, recorded over 20 reference fields of cereal crops. A second method, based on the use of neural networks, was also used to confirm the initial validation. The results reported here show that the soil moisture products retrieved from remotely sensed data are accurate, with a Root Mean Square Error (RMSE) of less than 5% between the two moisture products. In addition, the analysis of soil moisture and Normalized Difference Vegetation Index (NDVI) products over cultivated fields, as a function of time, led to the classification of irrigated and rainfed areas on the Kairouan plain, and to the production of irrigation maps at the scale of individual fields. This classification is based on a decision tree approach, using a combination of various statistical indices of soil moisture and NDVI time series. The resulting irrigation maps were validated using reference fields within the study site. The best results were obtained with classifications based on soil moisture indices only, with an accuracy of 77%.



2011 ◽  
Vol 3 (3) ◽  
pp. 157
Author(s):  
Daniel Rodrigues Lira ◽  
Maria do Socorro Bezerra de Araújo ◽  
Everardo Valadares De Sá Barretto Sampaio ◽  
Hewerton Alves da Silva

O mapeamento e monitoramento da cobertura vegetal receberam consideráveis impulsos nas últimas décadas, com o advento do sensoriamento remoto, processamento digital de imagens e políticas de combate ao desmatamento, além dos avanços nas pesquisas e gerações de novos sensores orbitais e sua distribuição de forma mais acessível aos usuários, tornam as imagens de satélite um dos produtos do sensoriamento remoto mais utilizado para análises da cobertura vegetal das terras. Os índices de cobertura vegetal deste trabalho foram obtidos usando o NDVI - Normalized Difference Vegetation Index para o Agreste central de Pernambuco indicou 39,7% de vegetação densa, 13,6% de vegetação esparsa, 14,3% de vegetação rala e 10,5% de solo exposto. O NDVI apresentou uma caracterização satisfatória para a classificação do estado da vegetação do ano de 2007 para o Agreste Central pernambucano, porém ocorreu uma confusão com os índices de nuvens, sombras e solos exposto, necessitando de uma adaptação na técnica para um melhor aprimoramento da diferenciação desses elementos, constituindo numa recombinação de bandas após a elaboração e calculo do NDVI.Palavras-chave: Geoprocessamento; sensoriamento remoto; índice de vegetação. Mapping and Quantification of Vegetation Cover from Central Agreste Region of Pernambuco State Using NDVI Technique ABSTRACTIn recent decades, advanced techniques for mapping and monitoring vegetation cover have been developed with the advent of remote sensing. New tools for digital processing, the generation of new sensors and their orbital distribution more accessible have facilitated the acquisition and use of satellite images, making them one of the products of remote sensing more used for analysis of the vegetation cover. The aim of this study was to assess the vegetation cover from Central Agreste region of Pernambuco State, using satellite images TM / LANDSAT-5. The images were processed using the NDVI (Normalized Difference Vegetation Index) technique, generating indexes used for classification of vegetation in dense, sparse and scattered. There was a proportion of 39.7% of dense vegetation, 13.6% of sparse vegetation, 14.3% of scattered vegetation and 10.5% of exposed soil. NDVI technique has been used as a useful tool in the classification of vegetation on a regional scale, however, needs improvement to a more precise differentiation among levels of clouds, shadow, exposed soils and vegetation. Keywords: Geoprocessing, remote sensing, vegetation index



2018 ◽  
Vol 7 (7) ◽  
pp. 389
Author(s):  
Herika Cavalcante ◽  
Patrícia Silva Cruz ◽  
Leandro Gomes Viana ◽  
Daniely De Lucena Silva ◽  
José Etham De Lucena Barbosa

The aim of this study was to evaluate some parameters of water quality of semiarid reservoirs under different uses and occupation of the catchment’s soil. For this, the reservoirs Acauã and Boqueirão, belonging to the Paraíba do Norte river watershed and Middle and Upper course sub catchments, respectively, were studied. For this, water samples were collected in August, September and October 2016. From these samples, total and dissolved phosphorus, nitrate, nitrite, ammonia, chlorophyll, dissolved and suspended solids were analyzed. In addition, images of the Landsat 8 satellite were acquired for the calculation of the Normalized Difference Vegetation Index (NDVI), and for the supervised classification of the use and occupation of the sub catchments. Thus, it was observed that, in general, the Acauã reservoir presented values of phosphorus and nitrogen and solids larger than the Boqueirão reservoir, due to the greater urban area, even though it had a smaller total area of the basin. Both reservoirs presented low vegetation rates and high areas of sparse vegetation and exposed soil, increasing the propensity to soil erosion and the transport of nutrients from the basin to the reservoirs, making water quality worse or impossible.



2012 ◽  
Vol 4 (5) ◽  
pp. 909
Author(s):  
Jarcilene Almeida-Cortez ◽  
Mateus Dantas de Paula ◽  
Martin Duarte de Oliveira ◽  
Cátia Inês Rodrigues dos Santos

Espécies de plantas distribuídas em uma paisagem são submetidas a um mosaico de condições abióticas que podem ter efeito negativo sobre o desenvolvimento (stress geração) e expô-las à predação por herbívoros. Esse estresse pode causar adicionalmente assimetria foliar e uma redução na produção primária. A taxa fotossintética, relacionada com a produtividade da planta, pode ser medida por índices espectrais, tais como o NDVI (índice de vegetação da diferença normalizada), calculado a partir de imagens de satélite. No presente trabalho, testou-se a hipótese de que ambientes com baixa produtividade primária (NDVI baixo) irá possuir maior assimetria foliar e maiores taxas de herbivoria. Os resultados mostram que na região de Caatinga semi árida de Pernambuco, Brasil, a folha de assimetria diminui com valores mais elevados de NDVI, indicando uma estreita relação entre esta medida da planta e o índice espectral. Por outro lado, a correlação entre herbivoria e produção primária ou assimetria foliar não foi significativa, sugerindo que os herbívoros vão além da simples seleção de indivíduos mais estressados. Palavras-Chave: Assimetria flutuante, herbivoria, NDVI   Taxa de Herbivoria em Espécies Arbóreas da Caatinga e o Uso do Índice de Vegetação por Diferença Normalizada (NDVI) como Indicador de Estresse em Planta   ABSTRACT Plant species distributed on a landscape are submitted to a mosaic of abiotic conditions that may have a negative effect on development (generating stress) and expose them to predation by herbivores. This stress can cause additionally leaf asymmetry and a reduction on primary production. The photosynthetic rate, related to plant productivity, can be measured by spectral indexes, such as the NDVI (normalized difference vegetation index), calculated from satellite images. In the present work, we test the hypothesis that environments with low primary productivity (low NDVI) will possess larger leaf asymmetry and higher herbivory rates. Our results show that in the Caatinga semi-arid region of Pernambuco, Brazil, the leaf asymmetry reduces with higher NDVI values, indicating a close relationship between this plant measure and the spectral index. On the other side, the correlation between herbivory and primary production or leaf asymmetry was not significant, suggesting that herbivores go beyond just selecting more stressed individuals.   Keywords: Leaf asymmetry, NDVI, herbivory



SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 459-473 ◽  
Author(s):  
J. M. Terrón ◽  
J. Blanco ◽  
F. J. Moral ◽  
L. A. Mancha ◽  
D. Uriarte ◽  
...  

Abstract. Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012 and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index (NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8 m soil depth using an on-the-go geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological conditions.



Sign in / Sign up

Export Citation Format

Share Document