scholarly journals Spatial organization of the somatosensory cortex revealed by cyclic smFISH

2018 ◽  
Author(s):  
Simone Codeluppi ◽  
Lars E. Borm ◽  
Amit Zeisel ◽  
Gioele La Manno ◽  
Josina A. van Lunteren ◽  
...  

The global efforts towards the creation of a molecular census of the brain using single-cell transcriptomics is generating a large catalog of molecularly defined cell types lacking spatial information. Thus, new methods are needed to map a large number of cell-specific markers simultaneously on large tissue areas. Here, we developed a cyclic single molecule fluorescence in situ hybridization methodology and defined the cellular organization of the somatosensory cortex using markers identified by single-cell transcriptomics.

2021 ◽  
Author(s):  
Nicholas Navin ◽  
Runmin Wei ◽  
Siyuan He ◽  
Shanshan Bai ◽  
Emi Sei ◽  
...  

Single cell RNA sequencing (scRNA-seq) methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics (ST) assays can profile spatial regions in tissue sections, but do not have single cell genomic resolution. Here, we developed a computational approach called SChart, that combines these two datasets to achieve single cell spatial mapping of cell types, cell states and continuous phenotypes. We applied SChart to reconstruct cellular spatial structures in existing datasets from normal mouse brain and kidney tissues to validate our approach. We also performed scRNA-seq and ST experiments on two ductal carcinoma in situ (DCIS) tissues and applied SChart to identify subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data shows that SChart can accurately map single cells in diverse tissue types to resolve their spatial organization into cellular neighborhoods and tissue structures.


2019 ◽  
Author(s):  
Qiyu Chen ◽  
Dena Leshkowitz ◽  
Janna Blechman ◽  
Gil Levkowitz

AbstractThe neurohypophysis (NH), located at the posterior lobe of the pituitary, is a major neuroendocrine tissue, which mediates osmotic balance, blood pressure, reproduction, and lactation by means of releasing the neurohormones oxytocin and arginine-vasopressin from the brain into the peripheral blood circulation. The major cellular components of the NH are hypothalamic axonal termini, fenestrated endothelia and pituicytes, the resident astroglia. However, despite the physiological importance of the NH, the exact molecular signature defining neurohypophyseal cell types and in particular the pituicytes, remains unclear. Using single cell RNA sequencing, we captured seven distinct cell types in the NH and intermediate lobe (IL) of adult male mouse. We revealed novel pituicyte markers showing higher specificity than previously reported. Single molecule in situ hybridization revealed spatial organization of the major cell types implying intercellular communications. We present a comprehensive molecular and cellular characterization of neurohypophyseal cell-types serving as a valuable resource for further functional research.Significance StatementThe neurohypophysis (NH) is a major neuroendocrine interface, which allows the brain to regulate the function of peripheral organs in response to specific physiological demands. Despite its importance, a comprehensive molecular description of cell identities in the NH is still lacking. Utilizing single cell RNA sequencing technology, we identified the transcriptomes of five major neurohypophyseal cell types in the adult male mice and mapped the spatial distribution of selected cell types in situ. We revealed an unexpected cellular heterogeneity of the neurohypophysis and provide novel molecular markers for neurohypophyseal cell types with higher specificity than previously reported.


2019 ◽  
Author(s):  
Sooyeon Yoo ◽  
David Cha ◽  
Dong Won Kim ◽  
Thanh V. Hoang ◽  
Seth Blackshaw

AbstractLeptin is secreted by adipocytes to regulate appetite and body weight. Recent studies have reported that tanycytes actively transport circulating leptin across the brain barrier into the hypothalamus, and are required for normal levels of hypothalamic leptin signaling. However, direct evidence for leptin receptor (LepR) expression is lacking, and the effect of tanycyte-specific deletion of LepR has not been investigated. In this study, we analyze the expression and function of the tanycytic LepR in mice. Using single-molecule fluorescent in situ hybridization (smfISH), RT-qPCR, single-cell RNA sequencing (scRNA-Seq), and selective deletion of the LepR in tanycytes, we are unable to detect expression of LepR in the tanycytes. Tanycyte-specific deletion of LepR likewise did not affect leptin-induced pSTAT3 expression in hypothalamic neurons, regardless of whether leptin was delivered by intraperitoneal or intracerebroventricular injection. Finally, we use activity-regulated scRNA-Seq (act-Seq) to comprehensively profile leptin-induced changes in gene expression in all cell types in mediobasal hypothalamus. Clear evidence for leptin signaling is only seen in endothelial cells and subsets of neurons, although virtually all cell types show leptin-induced changes in gene expression. We thus conclude that LepR expression in tanycytes is either absent or undetectably low, that tanycytes do not directly regulate hypothalamic leptin signaling through a LepR-dependent mechanism, and that leptin regulates gene expression in diverse hypothalamic cell types through both direct and indirect mechanisms.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Monica Nagendran ◽  
Daniel P Riordan ◽  
Pehr B Harbury ◽  
Tushar J Desai

A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research.


2019 ◽  
Author(s):  
Sanja Vickovic ◽  
Gökcen Eraslan ◽  
Johanna Klughammer ◽  
Linnea Stenbeck ◽  
Fredrik Salmén ◽  
...  

AbstractTissue function relies on the precise spatial organization of cells characterized by distinct molecular profiles. Single-cell RNA-Seq captures molecular profiles but not spatial organization. Conversely, spatial profiling assays either lack global transcriptome information or are not at the single-cell level. Here, we develop High-Density Spatial Transcriptomics (HDST), a method for RNA-seq at high spatial resolution. Spatially barcoded reverse transcription oligonucleotides are coupled to beads that are then randomly deposited in individual wells on a slide. The barcoded beads are decoded and coupled to a specific spatial address. We then capture and spatially in situ label RNA from the same histological tissue sections placed on the bead array slide. HDST recovers hundreds of thousands of transcript-coupled barcodes per experiment at 2 μm resolution. We demonstrate HDST in the mouse brain, use it to resolve spatial expression patterns and cell types, and show how to combine it with histological stains to relate expression patterns to tissue architecture and anatomy. HDST opens the way to 2D spatial analysis of tissues at high resolution.


2019 ◽  
Author(s):  
Kee Wui Huang ◽  
Nicole E. Ochandarena ◽  
Adrienne C. Philson ◽  
Minsuk Hyun ◽  
Jaclyn E. Birnbaum ◽  
...  

ABSTRACTThe dorsal raphe nucleus (DRN) is an important source of neuromodulators in the brain and has been implicated in a wide variety of behavioral and neurological disorders. Although mostly studied as a source of serotonin, the DRN is comprised of multiple cell types that are subdivided into distinct anatomical subregions. However, the complex and incompletely characterized cellular organization of the DRN has impeded efforts to investigate the distinct circuit and behavioral functions of its subdomains. Here we used high-throughput single-cell RNA sequencing within situhybridization and viral tracing to develop a map of transcriptional and spatial profiles of cells in and around the mouse DRN. Our studies reveal the molecular and spatial organization of multiple neuron subtypes that are the cellular bases of functionally and anatomically distinct serotonergic subsystems, and provide a resource for the design of strategies for further dissection of these subsystems and their diverse functions.


Author(s):  
Xianwen Ren ◽  
Guojie Zhong ◽  
Qiming Zhang ◽  
Lei Zhang ◽  
Yujie Sun ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) has revolutionized transcriptomic studies by providing unprecedented cellular and molecular throughputs, but spatial information of individual cells is lost during tissue dissociation. While imaging-based technologies such as in situ sequencing show great promise, technical difficulties currently limit their wide usage. Since cellular spatial organization is inherently encoded by cell identity and can be reconstructed, at least in part, by ligand-receptor interactions, here we present CSOmap, a computational strategy to infer cellular interaction from scRNA-seq. We show that CSOmap can successfully recapitulate the spatial organization of tumor microenvironments for multiple cancers and reveal molecular determinants of cellular interactions. Further, CSOmap readily simulates perturbation of genes or cell types to gain novel biological insights, especially into how immune cells interact in the tumor microenvironment. CSOmap can be widely applicable to interrogate cellular organizations based on scRNA-seq data for various tissues in diverse systems.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A4-A4
Author(s):  
Anushka Dikshit ◽  
Dan Zollinger ◽  
Karen Nguyen ◽  
Jill McKay-Fleisch ◽  
Kit Fuhrman ◽  
...  

BackgroundThe canonical WNT-β-catenin signaling pathway is vital for development and tissue homeostasis but becomes strongly tumorigenic when dysregulated. and alter the transcriptional signature of a cell to promote malignant transformation. However, thorough characterization of these transcriptomic signatures has been challenging because traditional methods lack either spatial information, multiplexing, or sensitivity/specificity. To overcome these challenges, we developed a novel workflow combining the single molecule and single cell visualization capabilities of the RNAscope in situ hybridization (ISH) assay with the highly multiplexed spatial profiling capabilities of the GeoMx™ Digital Spatial Profiler (DSP) RNA assays. Using these methods, we sought to spatially profile and compare gene expression signatures of tumor niches with high and low CTNNB1 expression.MethodsAfter screening 120 tumor cores from multiple tumors for CTNNB1 expression by the RNAscope assay, we identified melanoma as the tumor type with the highest CTNNB1 expression while prostate tumors had the lowest expression. Using the RNAscope Multiplex Fluorescence assay we selected regions of high CTNNB1 expression within 3 melanoma tumors as well as regions with low CTNNB1 expression within 3 prostate tumors. These selected regions of interest (ROIs) were then transcriptionally profiled using the GeoMx DSP RNA assay for a set of 78 genes relevant in immuno-oncology. Target genes that were differentially expressed were further visualized and spatially assessed using the RNAscope Multiplex Fluorescence assay to confirm GeoMx DSP data with single cell resolution.ResultsThe GeoMx DSP analysis comparing the melanoma and prostate tumors revealed that they had significantly different gene expression profiles and many of these genes showed concordance with CTNNB1 expression. Furthermore, immunoregulatory targets such as ICOSLG, CTLA4, PDCD1 and ARG1, also demonstrated significant correlation with CTNNB1 expression. On validating selected targets using the RNAscope assay, we could distinctly visualize that they were not only highly expressed in melanoma compared to the prostate tumor, but their expression levels changed proportionally to that of CTNNB1 within the same tumors suggesting that these differentially expressed genes may be regulated by the WNT-β-catenin pathway.ConclusionsIn summary, by combining the RNAscope ISH assay and the GeoMx DSP RNA assay into one joint workflow we transcriptionally profiled regions of high and low CTNNB1 expression within melanoma and prostate tumors and identified genes potentially regulated by the WNT- β-catenin pathway. This novel workflow can be fully automated and is well suited for interrogating the tumor and stroma and their interactions.GeoMx Assays are for RESEARCH ONLY, not for diagnostics.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


Sign in / Sign up

Export Citation Format

Share Document