scholarly journals Intra-tumor heterogeneity defines treatment-resistant HER2+ breast tumors

2018 ◽  
Author(s):  
Inga H. Rye ◽  
Anne Trinh ◽  
Anna Sætersdal ◽  
Daniel Nebdal ◽  
Ole Christian Lingjærde ◽  
...  

AbstractTargeted therapy for patients with HER2 positive (HER2+) breast cancer has improved the overall survival, but many patients still suffer relapse and death of the disease. Intra-tumor heterogeneity of both estrogen receptor (ER) and HER2 expression has been proposed to play a key role in treatment failure, but little work has been done to comprehensively study this heterogeneity at the single-cell level.In this study, we explored the clinical impact of intra-tumor heterogeneity of ER protein expression, HER2 protein expression, and HER2 gene copy number alterations. Using combined immunofluorescence and in situ hybridization on tissue sections followed by a validated computational approach, we analyzed more than 13,000 single tumor cells across 37 HER2+ breast tumors. The samples were taken both before and after neoadjuvant chemotherapy plus HER2-targeted treatment, enabling us to study tumor evolution as well.We found that intra-tumor heterogeneity for HER2 copy number varied substantially between patient samples. Highly heterogeneous tumors were associated with significantly shorter disease-free survival and fewer long-term survivors. Patients for which HER2 characteristics did not change during treatment had a significantly worse outcome.This work shows the impact of intra-tumor heterogeneity in molecular diagnostics for treatment selection in HER2+ breast cancer patients and the power of computational scoring methods to evaluate in situ molecular markers in tissue biopsies.

2010 ◽  
Vol 28 (13) ◽  
pp. 2174-2180 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Daniel T. Merrick ◽  
Samir E. Witta ◽  
Adelita D. Mendoza ◽  
Barbara Szostakiewicz ◽  
...  

PurposeThe purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non–small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis.Patients and MethodsOne hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181).ResultsIGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis.ConclusionIGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 6023-6023
Author(s):  
P. Weinberger ◽  
A. Psyrri ◽  
P. Kountourakis ◽  
T. Rampias ◽  
C. Sasaki ◽  
...  

6023 Background: EGFR overexpression correlates with recurrence and with treatment resistance in HNSCC. The mechanisms of EGFR protein overexpression are poorly understood. Nonetheless, previous investigators have not demonstrated a correlation between EGFR gene copy number and protein content, using conventional immunohistochemistry (IHC). The aim of this study was to evaluate the relationship of EGFR gene copy number and protein expression utilizing fluorescence in situ hybridization (FISH) and AQUA, a novel, immunohistochemical method of automated quantitative in situ proteomic analysis which permits subcellular localization. Methods: A tissue microarray composed of 137 HNSCC treated with (chemo)radiation was constructed and analyzed for EGFR copy number by FISH (Vysis/Abbot) and EGFR protein expression (DAKO antibody) using AQUA analysis of EGFR staining scored on a scale of 0–255 and by conventional IHC. Agreement was assessed using kappa. Results: Sixteen (15%) of one-hundred six tumors with FISH results demonstrated EGFR high polysomy and/or gene amplification (FISH+). AQUA demonstrated a range of 3.6–102.2; protein levels assessed by AQUA in the FISH amplified cases were significantly higher (p =0.008) than in the FISH non- amplified ones. Using the EGFR 75th percentile as a cut-off, AQUA and FISH showed significant agreement (percentage of overall agreement 82%, kappa=0.458, p=0.003). To the contrary there was no concordance between FISH and conventional IHC results in this series. Conclusions: The discrepancy between EGFR gene amplification rate and protein expression by IHC reported previously may be due to the limitations and nonquantitative nature of conventional IHC. EGFR protein content correlates with gene copy number if protein content is quantitated and automatically analyzed, as with AQUA. No significant financial relationships to disclose.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Milica Nedeljković ◽  
Nikola Tanić ◽  
Tatjana Dramićanin ◽  
Zorka Milovanović ◽  
Snežana Šušnjar ◽  
...  

Summary Background: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.


2012 ◽  
Vol 7 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Murry W. Wynes ◽  
Shalini Singh ◽  
Bernadette Reyna Asuncion ◽  
James Ranger-Moore ◽  
...  

2019 ◽  
Vol 38 (1) ◽  
pp. 63-70
Author(s):  
Milica Nedeljković ◽  
Nikola Tanić ◽  
Tatjana Dramićanin ◽  
Zorka Milovanović ◽  
Snežana Šušnjar ◽  
...  

Summary Background: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.


Cell Cycle ◽  
2014 ◽  
Vol 13 (8) ◽  
pp. 1299-1305 ◽  
Author(s):  
Chunyan Li ◽  
Jingchao Bai ◽  
Xiaomeng Hao ◽  
Sheng Zhang ◽  
Yunhui Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document