scholarly journals Expanding the size limit of RNA viruses: Evidence of a novel divergent nidovirus in California sea hare, with a ~35.9 kb virus genome

2018 ◽  
Author(s):  
Humberto J Debat

While RNA viruses thrive with massive structural and functional diversity, their genomes size variation is particularly low, ranging only from ~2-to-33 kb. Here, I present the characterization of RNA sequences corresponding to the first virus associated with Aplysia californica . Genome structure and domain architecture suggest that the identified virus is a novel member of Nidovirales . The proposed aplysia californica nido-like virus (AcNV), with a genome sequence of ca.35,906 nt, represents the longest ever recorded RNA virus yet. Phylogenetic insights indicate that AcNV clusters in a major phylloclade of unclassified invertebrate nidoviruses, Roniviridae , and Mesoniviridae . Basal branching in this emerging cluster could indicate that AcNV is a member of a novel divergent clade within Nidovirales . Further, virus RNA detection in multiple independent studies suggests that AcNV is neurotropic with a broad cell/tissue/organ tropism, supported by AcNV occurrence in diverse organs, including the first detection of a Nidovirales in single specific neurons.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 68
Author(s):  
K. Andrew White

The genomes of RNA viruses contain a variety of RNA sequences and structures that regulate different steps in virus reproduction. Events that are controlled by RNA elements include (i) the translation of viral proteins, (ii) the replication of viral RNA genomes, and (iii) the transcription of viral subgenomic mRNAs. Studies of members of the family Tombusviridae, which possess plus-strand RNA genomes, have revealed novel ways in which the RNA genome structure is utilized to control different viral processes. Recent advances in our understanding of RNA-based viral regulation in select tombusvirids will be presented.


2020 ◽  
Vol 48 (16) ◽  
pp. 9285-9300
Author(s):  
Tamari Chkuaseli ◽  
K Andrew White

Abstract The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alfonso González de Prádena ◽  
Adrián Sánchez Jimenez ◽  
David San León ◽  
Peter Simmonds ◽  
Juan Antonio García ◽  
...  

ABSTRACT The presence of CpG and UpA dinucleotides is restricted in the genomes of animal RNA viruses to avoid specific host defenses. We wondered whether a similar phenomenon exists in nonanimal RNA viruses. Here, we show that these two dinucleotides, especially UpA, are underrepresented in the family Potyviridae, the most important group of plant RNA viruses. Using plum pox virus (PPV; Potyviridae family) as a model, we show that an increase in UpA frequency strongly diminishes virus accumulation. Remarkably, unlike previous observations in animal viruses, PPV variants harboring CpG-rich fragments display just faint (or no) attenuation. The anticorrelation between UpA frequency and viral fitness additionally demonstrates the relevance of this particular dinucleotide: UpA-high mutants are attenuated in a dose-dependent manner, whereas a UpA-low variant displays better fitness than its parental control. Using high-throughput sequencing, we also show that UpA-rich PPV variants are genetically stable, without apparent changes in sequence that revert and/or compensate for the dinucleotide modification despite its attenuation. In addition, we also demonstrate here that the PPV restriction of UpA-rich variants works independently of the classical RNA silencing pathway. Finally, we show that the anticorrelation between UpA frequency and RNA accumulation applies to mRNA-like fragments produced by the host RNA polymerase II. Together, our results inform us about a dinucleotide-based system in plant cells that controls diverse RNAs, including RNA viruses. IMPORTANCE Dinucleotides (combinations of two consecutive nucleotides) are not randomly present in RNA viruses; in fact, the presence of CpG and UpA is significantly repressed in their genomes. Although the meaning of this phenomenon remains obscure, recent studies with animal-infecting viruses have revealed that their low CpG/UpA frequency prevents virus restriction via a host antiviral system that recognizes, and promotes the degradation of, CpG/UpA-rich RNAs. Whether similar systems act in organisms from other life kingdoms has been unknown. To fill this gap in our knowledge, we built several synthetic variants of a plant RNA virus with deoptimized dinucleotide frequencies and analyzed their viral fitness and genome adaptation. In brief, our results inform us for the first time about an effective dinucleotide-based system that acts in plants against viruses. Remarkably, this viral restriction in plants is reminiscent of, but not identical to, the equivalent antiviral response in animals.


2006 ◽  
Vol 87 (7) ◽  
pp. 1805-1821 ◽  
Author(s):  
Vanessa M. Cowton ◽  
David R. McGivern ◽  
Rachel Fearns

Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3′ ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.


2019 ◽  
Author(s):  
Lu Lu ◽  
Liam Brierley ◽  
Gail Robertson ◽  
Feifei Zhang ◽  
Samantha Lycett ◽  
...  

AbstractTo have epidemic potential, a pathogen must be able to spread in human populations, but of human-infective RNA viruses only a minority can do so. We investigated the evolution of human transmissibility through parallel analyses of 1755 virus genome sequences from 39 RNA virus genera. We identified 57 lineages containing human-transmissible species and estimated that at least 74% of these lineages have evolved directly from non-human viruses in other mammals or birds, a public health threat recently designated “Disease X”. Human-transmissible viruses rarely evolve from virus lineages that can infect but not transmit between humans. This result cautions against focussing surveillance and mitigation efforts narrowly on currently known human-infective virus lineages and supports calls for a better understanding of RNA virus diversity in non-human hosts.


2020 ◽  
Author(s):  
Huaxian Zheng ◽  
Jeffrey Zheng

Abstract The outbreak of a novel coronavirus (SARS-CoV-2) in many countries in the world from late 2019 to 2020 resulted in millions of infected people, and caused serious damage to the social environments with significant changes in human power and material resources in the world. The novel coronavirus is an RNA virus. RNA mutation is common in nature. This makes it extremely difficult to develop a virus vaccine in a short period. The evolution of the virus has been in a mutation state, in which a certain sequence changes associated with time and environments in similar distributions. A larger number of genomes were collected in various open source databases for scientists in further explorations. In this paper, a 2D similarity comparison scheme on the A2 module of the MAS is proposed for extracting internal information among a genome undertaken M segment partitions to provide visual results based on probability measures and quantitative statistics. First, a genome is segmented into corresponding numerical transformations, and then four numbers of meta symbols in each segment are counted.Corresponding probability measures are calculated. Second, the probability is transformed into polar coordinates, and the polar coordinates are mapped into a MxM matrix. Then, a 1D genome can be processed into 2D measures with similarity properties in sequence. Through this correlation matrix, relevant similarity results are analyzed.


2021 ◽  
Author(s):  
Zeli Chen ◽  
Lu Chen ◽  
Rex Frimpong Anane ◽  
Zhe Wang ◽  
Like Gao ◽  
...  

Abstract Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus isolated from diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 consists of 2,751 nucleotides with a genome structure typical of the mitoviruses. ParMV1 genome has a single open reading frame (ORF: 358-2,637 nt) that encodes RNA-dependent RNA polymerase (RdRp) with a molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. In addition, the 5′and 3′ terminals of the genome have a stable secondary structure, and the reverse complementary sequence forms a panhandle structure. Comparative genome analysis revealed that ParMV1 shares 23.1–40.6% amino acid (aa) and 32.3–45.7% nucleotide (nt) sequence identities with the RdRp of other mitoviruses. The phylogenetic tree inferred from RdRp aa sequence showed that ParMV1 clusters with mitoviruses, and hence should be considered as a new member of the genus Mitovirus in the family Motiviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.


2021 ◽  
Author(s):  
Huaxian Zheng ◽  
Jeffrey Zheng

Abstract The outbreak of a novel coronavirus (SARS-CoV-2) in many countries in the world from late 2019 to 2020 resulted in millions of infected people, and caused serious damage to the social environments with significant changes in human power and material resources in the world. The novel coronavirus is an RNA virus. RNA mutation is common in nature. This makes it extremely difficult to develop a virus vaccine in a short period. The evolution of the virus has been in a mutation state, in which a certain sequence changes associated with time and environments in similar distributions. A larger number of genomes were collected in various open source databases for scientists in further explorations. In this paper, a 2D similarity comparison scheme on the A2 module of the MAS is proposed for extracting internal information among a genome undertaken M segment partitions to provide visual results based on probability measures and quantitative statistics. First, a genome is segmented into corresponding numerical transformations, and then four numbers of meta symbols in each segment are counted. Corresponding probability measures are calculated. Second, the probability is transformed into polar coordinates, and the polar coordinates are mapped into a M × M matrix. Then, a 1D genome can be processed into 2D measures with similarity properties in sequence. Through this correlation matrix, relevant similarity results are analyzed.


2021 ◽  
Author(s):  
Valerie Odon ◽  
Steven fiddaman ◽  
Adrian Smith ◽  
Peter Simmonds

The ability of zinc finger antiviral protein (ZAP) to recognise and respond to RNA virus sequences with elevated frequencies of CpG dinucleotides has been proposed as a functional part of the vertebrate innate immune antiviral response. It has been further proposed that ZAP activity shapes compositions of cytoplasmic mRNA sequences to avoid self-recognition, particularly mRNAs for interferons (IFNs) and IFN-stimulated genes highly expressed when ZAP is upregulated during the antiviral state. We investigated the ZAP functional activity in different species of mammals and birds, and potential downstream effects of differences in CpG and UpA dinucleotide representations in host transcriptomes and in RNA viruses that infect them. Cell lines from different bird orders showed variability in restriction of influenza A virus and echovirus 7 replicons with elevated CpG frequencies and none restricted UpA-high mutants, in marked contrast to mammalian cell lines. Given this variability, we compared CpG and UpA representation in coding regions of ISGs and IFNs with the total cellular transcriptome to determine whether differences in ZAP activity shaped dinucleotide compositions of highly expressed genes during the antiviral state. While type 1 IFN genes typically showed often profound suppression of CpG and UpA frequencies, there was no over-suppression of CpGs or UpAs in ISGs in any species, irrespective of underlying ZAP activity. Similarly, mammalian and avian RNA virus genome sequences were compositionally equivalent as were IAV serotypes recovered from ducks, chickens and humans. Overall, we found no evidence for host variability in ZAP function impacting compositions of antiviral genes.


2019 ◽  
Author(s):  
Ritam Neupane ◽  
Vera P. Pisareva ◽  
Carlos F. Rodríguez ◽  
Andrey V. Pisarev ◽  
Israel S. Fernández

AbstractRNA viruses are pervasive entities in the biosphere with significant impact in human health and economically important livestock. As strict cellular parasites, RNA viruses abuse host resources, redirecting them towards viral replication needs. Taking control of the cellular apparatus for protein production is a requirement for virus progression and diverse strategies of cellular mimicry and/or ribosome hijacking evolved to ensure this control. Especially in complex eukaryotes, translation is a sophisticated process, with multiple mechanisms acting on ribosomes and mRNAs. The initiation stage of translation is specially regulated, involving multiple steps and the engagement of numerous initiation factors some of them of high complexity. The use of structured RNA sequences, called Internal Ribosomal Entry Sites (IRES), in viral RNAs is a widespread strategy for the exploitation of eukaryotic initiation. Using a combination of electron cryo-microscopy (cryo-EM) and reconstituted translation initiation assays with native components, we characterized how a novel IRES at the 5’-UTR of a viral RNA assembles a functional translation initiation complex via an uAUG intermediate, redirecting the cellular machinery for protein production towards viral messengers. The IRES features a novel extended, multi-domain architecture, circling the 40S head, leveraging ribosomal sites not previously described to be exploited by any IRES. The structures and accompanying functional data, illustrate the importance of 5’-UTR regions in translation regulation and underline the relevance of the untapped diversity of viral IRESs. Given the large number of new viruses metagenomic studies have uncovered, the quantity and diversity of mechanisms for translation hijacking encrypted in viral sequences may be seriously underestimated. Exploring this diversity could reveal novel avenues in the fight against these molecular pathogens.


Sign in / Sign up

Export Citation Format

Share Document