scholarly journals Regulation of RNA Virus Processes by Viral Genome Structure

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 68
Author(s):  
K. Andrew White

The genomes of RNA viruses contain a variety of RNA sequences and structures that regulate different steps in virus reproduction. Events that are controlled by RNA elements include (i) the translation of viral proteins, (ii) the replication of viral RNA genomes, and (iii) the transcription of viral subgenomic mRNAs. Studies of members of the family Tombusviridae, which possess plus-strand RNA genomes, have revealed novel ways in which the RNA genome structure is utilized to control different viral processes. Recent advances in our understanding of RNA-based viral regulation in select tombusvirids will be presented.

2018 ◽  
Author(s):  
Humberto J Debat

While RNA viruses thrive with massive structural and functional diversity, their genomes size variation is particularly low, ranging only from ~2-to-33 kb. Here, I present the characterization of RNA sequences corresponding to the first virus associated with Aplysia californica . Genome structure and domain architecture suggest that the identified virus is a novel member of Nidovirales . The proposed aplysia californica nido-like virus (AcNV), with a genome sequence of ca.35,906 nt, represents the longest ever recorded RNA virus yet. Phylogenetic insights indicate that AcNV clusters in a major phylloclade of unclassified invertebrate nidoviruses, Roniviridae , and Mesoniviridae . Basal branching in this emerging cluster could indicate that AcNV is a member of a novel divergent clade within Nidovirales . Further, virus RNA detection in multiple independent studies suggests that AcNV is neurotropic with a broad cell/tissue/organ tropism, supported by AcNV occurrence in diverse organs, including the first detection of a Nidovirales in single specific neurons.


2019 ◽  
Author(s):  
◽  
Samantha Elizabeth Brady

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Understanding viral RNA structure and how it functions is crucial in elucidating new drug targets. There are many kinds of viruses that utilize RNA as a critical component of their life cycle, such as retroviruses, single-stranded plus or minus sense RNA viruses, and double-stranded RNA viruses. Two viruses that are studied in this thesis are human immunodeficiency virus (HIV), which is a retrovirus, and hepatitis C virus (HCV), which is a single-stranded plus sense RNA virus. It has been previously reported that a human host factor, RNA helicase A (RHA), is packaged into HIV virions by binding to the primer binding site (PBS) segment of the 5'untranslated region in the HIV genomic RNA. We determined RHA is required for efficient reverse transcription prior to capsid uncoating by utilizing cell based and in vitro techniques. It has also been suggested that RHA plays other roles during HIV infection besides reverse transcription. Utilizing NMR, we demonstrated that RHA binds to the monomeric 5'UTR at the bottom of the TAR hairpin, which is different from how it binds during viral packaging. Next, we employed NMR techniques to probe the 3'end of the HCV genome called 3'X. We determined that the 3'X is in structural equilibrium between two states: an open conformation and a closed conformation. These two conformations have been suggested to play a role in minus sense synthesis and viral protein translation, respectively. Taken together, my thesis work has elucidated how many viruses manipulate and utilize their RNA structure to modulate their outcome.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1005 ◽  
Author(s):  
Jennifer L. Elliott ◽  
Sebla B. Kutluay

The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.


2020 ◽  
Vol 28 ◽  
pp. 204020662097678
Author(s):  
Johanna Huchting

Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.


2019 ◽  
Vol 6 (1) ◽  
pp. 93-117 ◽  
Author(s):  
Mark A. Boerneke ◽  
Jeffrey E. Ehrhardt ◽  
Kevin M. Weeks

RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.


2020 ◽  
Vol 117 (16) ◽  
pp. 9112-9121 ◽  
Author(s):  
Hehong Zhang ◽  
Lulu Li ◽  
Yuqing He ◽  
Qingqing Qin ◽  
Changhai Chen ◽  
...  

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 131
Author(s):  
Jasmin Chahal ◽  
Luca FR Gebert ◽  
Hin Hark Gan ◽  
Kristin C Gunsalus ◽  
Ian J MacRae ◽  
...  

Hepatitis C virus (HCV) is a positive-sense RNA virus that interacts with a human-liver-specific microRNA, termed miR-122. miR-122 binds to two sites in the 5' untranslated region (UTR) of the viral genome, and this interaction promotes HCV RNA accumulation. This interaction is important for viral RNA accumulation in cell culture, and miR-122 inhibitors have been demonstrated to be efficacious in reducing HCV titers in chronic HCV-infected patients. However, the precise mechanism(s) of miR-122-mediated viral RNA accumulation have remained elusive. We have used biophysical analysis and assays for viral replication in cell culture to understand the interactions between the human Argonaute 2 (hAgo2):miR-122 complex and the HCV genome. In addition, we have analyzed several resistance-associated variants which were isolated from patients who underwent miR-122 inhibitor-based therapy in order to shed light on novel mechanisms of antiviral resistance. Our results provide a new model for miR-122:HCV RNA interactions and demonstrate that miR-122 plays at least three roles in the HCV life cycle: (1) miR-122 acts as an RNA chaperone to suppress an energetically favorable secondary structure and allows the viral internal ribosomal entry site (IRES) to form; (2) miR-122 binding to the 5' terminus protects the genome from the activity of cellular pyrophosphatases (DOM3Z and DUSP11) and subsequent exonuclease-mediated decay; and (3) the Argonaute (Ago) protein at Site 2 makes direct contact with the HCV IRES, enhancing viral translation. In addition, analyses of several resistance-associated variants that were isolated from patients that underwent miR-122 inhibitor-based therapy suggests that mutations in the 5' terminus alter the structure of the 5' UTR in a manner that promotes RNA chaperone activity or viral genome stability, even in the absence of miR-122. Taken together, these findings provide insight into the mechanism(s) of miR-122-mediated viral RNA accumulation and suggest new mechanisms of antiviral resistance which are mediated by changes in RNA structure.


2000 ◽  
Vol 74 (7) ◽  
pp. 3156-3165 ◽  
Author(s):  
Richard Molenkamp ◽  
Babette C. D. Rozier ◽  
Sophie Greve ◽  
Willy J. M. Spaan ◽  
Eric J. Snijder

ABSTRACT Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.


2005 ◽  
Vol 79 (16) ◽  
pp. 10608-10618 ◽  
Author(s):  
Zivile Panaviene ◽  
Tadas Panavas ◽  
Peter D. Nagy

ABSTRACT Plus-strand RNA virus replication requires the assembly of the viral replicase complexes on intracellular membranes in the host cells. The replicase of Cucumber necrosis virus (CNV), a tombusvirus, contains the viral p33 and p92 replication proteins and possible host factors. In addition, the assembly of CNV replicase is stimulated in the presence of plus-stranded viral RNA (Z. Panaviene et al., J. Virol. 78:8254-8263, 2004). To define cis-acting viral RNA sequences that stimulate replicase assembly, we performed a systematic deletion approach with a model tombusvirus replicon RNA in Saccharomyces cerevisiae, which also coexpressed p33 and p92 replication proteins. In vitro replicase assays performed with purified CNV replicase preparations from yeast revealed critical roles for three RNA elements in CNV replicase assembly: the internal p33 recognition element (p33RE), the replication silencer element (RSE), and the 3′-terminal minus-strand initiation promoter (gPR). Deletion or mutagenesis of these elements reduced the activity of the CNV replicase to a minimal level. In addition to the primary sequences of gPR, RSE, and p33RE, formation of two alternative structures among these elements may also play a role in replicase assembly. Altogether, the role of multiple RNA elements in tombusvirus replicase assembly could be an important factor to ensure fidelity of template selection during replication.


2020 ◽  
Author(s):  
Pramod R. Bhatt ◽  
Alain Scaiola ◽  
Gary Loughran ◽  
Marc Leibundgut ◽  
Annika Kratzel ◽  
...  

AbstractProgrammed ribosomal frameshifting is the key event during translation of the SARS-CoV-2 RNA genome allowing synthesis of the viral RNA-dependent RNA polymerase and downstream viral proteins. Here we present the cryo-EM structure of the mammalian ribosome in the process of translating viral RNA paused in a conformation primed for frameshifting. We observe that the viral RNA adopts a pseudoknot structure lodged at the mRNA entry channel of the ribosome to generate tension in the mRNA that leads to frameshifting. The nascent viral polyprotein that is being synthesized by the ribosome paused at the frameshifting site forms distinct interactions with the ribosomal polypeptide exit tunnel. We use biochemical experiments to validate our structural observations and to reveal mechanistic and regulatory features that influence the frameshifting efficiency. Finally, a compound previously shown to reduce frameshifting is able to inhibit SARS-CoV-2 replication in infected cells, establishing coronavirus frameshifting as target for antiviral intervention.


Sign in / Sign up

Export Citation Format

Share Document