scholarly journals Disturbance macroecology: integrating disturbance ecology and macroecology with different-age post-fire stands of a closed-cone pine forest

2018 ◽  
Author(s):  
Erica A. Newman ◽  
Mark Q. Wilber ◽  
Karen E. Kopper ◽  
Max A. Moritz ◽  
Donald A. Falk ◽  
...  

AbstractMacroecological studies have generally restricted their scope to relatively steady-state systems, and as a result, how biodiversity and abundance metrics are expected to scale in disturbance-dependent ecosystems is unknown. We examine macroecological patterns in a fire-dependent forest of Bishop pine (Pinus muricata). We target two different-aged stands in a stand-replacing fire regime, one a characteristically mature stand with a diverse understory, and one more recently disturbed by a stand-replacing fire (17 years prior to measurement). We compare the stands using macroecological metrics of species richness, abundance and spatial distributions that are predicted by the Maximum Entropy Theory of Ecology (METE), an information-entropy based theory that has proven highly successful in predicting macroecological metrics across a wide variety of systems and taxa. Ecological patterns in the mature stand more closely match METE predictions than do data from the recently disturbed stand. This suggests METE’s predictions are more robust in late-successional, slowly changing, or steady-state systems than those in rapid flux with respect to species composition, abundances, and organisms’ sizes. Our findings highlight the need for a macroecological theory that incorporates natural disturbance and other ecological perturbations into its predictive capabilities, because most natural systems are not in a steady state.

2016 ◽  
Vol 24 (3) ◽  
pp. 233-243 ◽  
Author(s):  
Chris Stockdale ◽  
Mike Flannigan ◽  
Ellen Macdonald

As our view of disturbances such as wildfire has shifted from prevention to recognizing their ecological necessity, so too forest management has evolved from timber-focused even-aged management to more holistic paradigms like ecosystem-based management. Emulation of natural disturbance (END) is a variant of ecosystem management that recognizes the importance of disturbance for maintaining ecological integrity. For END to be a successful model for forest management we need to describe disturbance regimes and implement management actions that emulate them, in turn achieving our objectives for forest structure and function. We review the different components of fire regimes (cause, frequency, extent, timing, and magnitude), we describe low-, mixed-, and high-severity fire regimes, and we discuss key issues related to describing these regimes. When characterizing fire regimes, different methods and spatial and temporal extents result in wide variation of estimates for different fire regime components. Comparing studies is difficult as few measure the same components; some methods are based on the assumption of a high-severity fire regime and are not suited to detecting mixed- or low-severity regimes, which are critical to END management, as this would affect retention in harvested areas. We outline some difficulties with using fire regimes as coarse filters for forest management, including (i) not fully understanding the interactions between fire and other disturbance agents, (ii) assuming that fire is strictly an exogenous disturbance agent that exerts top-down control of forest structure while ignoring numerous endogenous and bottom-up feedbacks on fire effects, and (iii) assuming by only replicating natural disturbance patterns we preserve ecological processes and vital ecosystem components. Even with a good understanding of a fire regime, we would still be challenged with choosing the temporal and spatial scope for the disturbance regime we are trying to emulate. We cannot yet define forest conditions that will arise from variations in disturbance regime; this then limits our ability to implement management actions that will achieve those conditions. We end by highlighting some important knowledge gaps about fire regimes and how the END model could be strengthened to achieve a more sustainable form of forest management.


2005 ◽  
Vol 64 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Christy E. Briles ◽  
Cathy Whitlock ◽  
Patrick J. Bartlein

AbstractThe forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.


2007 ◽  
Vol 83 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Annie Belleau ◽  
Yves Bergeron ◽  
Alain Leduc ◽  
Sylvie Gauthier ◽  
Andrew Fall

It is now recognized that in the Canadian boreal forest, timber harvesting activities have replaced wildfires as the main stand-replacing disturbance. Differences in landscape patterns derived from these two sources of disturbance have, however, raised concerns that the way forest harvesting has been dispersed is potentially shifting patterns away from the natural range. In the context of natural disturbance-based management, we used a spatially explicit model designed to capture general fire regimes in order to quantify temporal variability associated with regenerating areas (burnt areas of 25 years or younger), and to develop strategic objectives for harvest agglomeration sizes and dispersion. We first evaluated temporal variability in the proportion of stands younger than 100 years (assumed to be even-aged stands) for various fire regimes (seven fire cycles: 50 to 400 years, and three mean fires sizes: 3000, 15 000 and 60 000 ha). Secondly, we quantified the size distribution and dispersion of regenerating areas for each fire regime. As expected by theoretical fire frequencies and size distributions, the importance of even-aged stands at the forest management unit level was found to decrease with longer fire cycles. However, the temporal variability associated with these proportions is shown to increase with mean fire size. It was also observed that the size distribution and dispersion of regenerating areas was primarily influenced by mean fire size. Based on these observations, natural disturbance-based management objectives were formulated, providing guidelines on harvest agglomeration size and dispersion. Key words: temporal variability, boreal forest, fire regime, forest management, age distribution, fire size distribution, clearcut agglomeration size distribution


2014 ◽  
Vol 44 (4) ◽  
pp. 365-376 ◽  
Author(s):  
Yan Boulanger ◽  
Sylvie Gauthier ◽  
Philip J. Burton

Broad-scale fire regime modelling is frequently based on large ecological and (or) administrative units. However, these units may not capture spatial heterogeneity in fire regimes and may thus lead to spatially inaccurate estimates of future fire activity. In this study, we defined homogeneous fire regime (HFR) zones for Canada based on annual area burned (AAB) and fire occurrence (FireOcc), and we used them to model future (2011–2040, 2041–2070, and 2071–2100) fire activity using multivariate adaptive regression splines (MARS). We identified a total of 16 HFR zones explaining 47.7% of the heterogeneity in AAB and FireOcc for the 1959–1999 period. MARS models based on HFR zones projected a 3.7-fold increase in AAB and a 3.0-fold increase in FireOcc by 2100 when compared with 1961–1990, with great interzone heterogeneity. The greatest increases would occur in zones located in central and northwestern Canada. Much of the increase in AAB would result from a sharp increase in fire activity during July and August. Ecozone- and HFR-based models projected relatively similar nationwide FireOcc and AAB. However, very high spatial discrepancies were noted between zonations over extensive areas. The proposed HFR zonation should help providing more spatially accurate estimates of future ecological patterns largely driven by fire in the boreal forest such as biodiversity patterns, energy flows, and carbon storage than those obtained from large-scale multipurpose classification units.


2017 ◽  
Author(s):  
Johannes R. Björk ◽  
Robert B. O’Hara ◽  
Marta Ribes ◽  
Rafel Coma ◽  
José M. Montoya

AbstractThe long-term stability of microbiomes is crucial as the persistent occurrence of beneficial microbes and their associated functions ensure host health and well-being. Microbiomes are highly diverse and dynamic, making them challenging to understand. Because many natural systems work as temporal networks, we present an approach that allows identifying meaningful ecological patterns within complex microbiomes: the dynamic core microbiome. On the basis of six marine sponge species sampled monthly over three years, we study the structure, dynamics and stability of their microbiomes. What emerge for each microbiome is a negative relationship between temporal variability and mean abundance. The notion of the dynamic core microbiome allowed us to determine a relevant functional attribute of the microbiome: temporal stability is not determined by the diversity of a host’s microbial assemblages, but rather by the density of those microbes that conform its core microbiome. The core microbial interaction network consisted of complementary members interacting weakly with dominance of comensal and amensal interactions that suggests self-regulation as a key determinant of the temporal stability of the microbiome. These interactions have likely coevolved to maintain host functionality and fitness over ecological, and even evolutionary time scales.


Author(s):  
Richard Norgaard ◽  
◽  
John Wiens ◽  
Stephen Brandt ◽  
Elizabeth Canuel ◽  
...  

Ecosystems in the Sacramento–San Joaquin Delta are changing rapidly, as are ecosystems around the world. Extreme events are becoming more frequent and thresholds are likely to be crossed more often, creating greater uncertainty about future conditions. The accelerating speed of change means that ecological systems may not remain stable long enough for scientists to understand them, much less use their research findings to inform policy and management. Faced with these challenges, those involved in science, policy, and management must adapt and change and anticipate what the ecosystems may be like in the future. We highlight several ways of looking ahead—scenario analyses, horizon scanning, expert elicitation, and dynamic planning—and suggest that recent advances in distributional ecology, disturbance ecology, resilience thinking, and our increased understanding of coupled human–natural systems may provide fresh ways of thinking about more rapid change in the future. To accelerate forward-looking science, policy, and management in the Delta, we propose that the State of California create a Delta Science Visioning Process to fully and openly assess the challenges of more rapid change to science, policy, and management and propose appropriate solutions, through legislation, if needed.


Science ◽  
1981 ◽  
Vol 211 (4480) ◽  
pp. 390-393 ◽  
Author(s):  
D. G. SPRUGEL ◽  
F. H. BORMANN

2010 ◽  
Vol 129 (1) ◽  
pp. 53-69 ◽  
Author(s):  
Patrik Krebs ◽  
Gianni B. Pezzatti ◽  
Stefano Mazzoleni ◽  
Lee M. Talbot ◽  
Marco Conedera

2007 ◽  
Vol 37 (10) ◽  
pp. 1846-1853 ◽  
Author(s):  
Matthew Carlson ◽  
Werner A. Kurz

Successful implementation of the natural disturbance model for timber harvest is hindered by the lack of strategies to approximate landscape fire pattern. In the forests of Alberta, Canada, the fire regime is dominated by large fires that create large regions of same-aged forest. Current forestry practices disperse harvest blocks across the landscape, causing increased fragmentation as compared with fire. Aggregating harvest blocks is one potential strategy to improve approximation of natural landscape pattern. We used a simulation approach to compare landscape pattern created by aggregated harvest strategies, the current dispersed harvest approach, and the natural disturbance regime for a 270 000 ha forest landscape in northeastern Alberta. Compared with dispersed harvest, aggregated strategies increased compatibility with natural landscape pattern by reducing fragmentation. Capacity to aggregate harvest declined when the constraint of maintaining a constant proportion of deciduous to coniferous harvest was included. We conclude that aggregated harvest can improve implementation of the natural disturbance model by bringing several landscape metrics closer to the conditions that fall within the natural range of variability. Aggregated harvest alone, however, performed poorly at maintaining interior old forest, emphasizing that an explicit old-forest strategy is also required.


2013 ◽  
Vol 43 (7) ◽  
pp. 658-668 ◽  
Author(s):  
Hélène M. Marcoux ◽  
Sarah E. Gergel ◽  
Lori D. Daniels

Maps depicting historic fire regimes provide critical baselines for sustainable forest management and wildfire risk assessments. However, given our poor understanding of mixed-severity fire regimes, we asked if there may be considerable errors in fire-regime classification systems used to create landscape-level maps. We used dendrochronological field data (fire scars and tree establishment dates) from 20 randomly selected sites in southern British Columbia to evaluate two classification systems (Natural Disturbance Type (NDT) and Historical Natural Fire Regime (HNFR)) used by managers to map fire regimes. We found evidence of mixed-severity fires at 55% of sites. Each classification system made considerable and contrasting errors predicting mixed-severity regimes (relative to field data), and the discrepancies varied with elevation. The NDT system underrepresented low-to-moderate-severity fires at lower elevations, whereas the HNFR system overpredicted their occurrence at higher elevations. Errors are attributed to underlying assumptions about disturbances in the two classification systems, as well as limitations of the research methods used to estimate fire frequency in mixed-severity regimes (i.e., methods more relevant to high- versus low-severity regimes). Ecological heterogeneity created by mixed-severity regimes potentially influences decisions related to conservation, silviculture, wildfire, and fuel mitigation. Thus, understanding underlying assumptions and errors in mapping fire regimes is critical.


Sign in / Sign up

Export Citation Format

Share Document