scholarly journals Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides

2018 ◽  
Author(s):  
Loo Wee Chia ◽  
Marko Mank ◽  
Bernadet Blijenberg ◽  
Roger S. Bongers ◽  
Steven Aalvink ◽  
...  

AbstractThe establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOS) serve as specific substrates to promote the growth of gut microbes, particularly the group of Actinobacteria (bifidobacteria). Later in life, this shifts to the colonisation of Firmicutes and Bacteroidetes, which generally dominate the human gut throughout adulthood. The well-orchestrated transition is important for health, as an aberrant microbial composition and/or SCFA production are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMOS-degrader, Bifidobacterium longum subsp. infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in this early life period, i.e. lactose and HMOS. Mono-and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates (containing both lactose and HMOS). A cac was not able to grow on these substrates except when grown in co-culture with B. inf, leading concomitant butyrate production. Cross-feeding was observed, in which A. cac utilised the liberated monosaccharides as well as lactate and acetate produced by B. inf. This microbial cross-feeding is indicative of the key ecological role of bifidobacteria in providing substrates for other important species to colonise the infant gut. The symbiotic relationship between these key species contributes to the gradual production of butyrate early in life that could be important for host-microbial cross-talk and gut maturation.ImportanceThe establishment of a healthy infant gut microbiota is crucial for the immune, metabolic and neurological development of infants. Recent evidence suggests that an aberrant gut microbiota early in life could lead to discomfort and predispose infants to the development of immune related diseases. This paper addresses the ecosystem function of two resident microbes of the infant gut. The significance of this research is the proof of cross-feeding interactions between HMOS-degrading bifidobacteria and a butyrate-producing microorganism. Bifidobacteria in the infant gut that support the growth and butyrogenesis of butyrate-producing bacteria, could orchestrated an important event of maturation for both the gut ecosystem and physiology of infant.

2020 ◽  
pp. 1-16
Author(s):  
L.W. Chia ◽  
M. Mank ◽  
B. Blijenberg ◽  
R.S. Bongers ◽  
K. van Limpt ◽  
...  

The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation.


Author(s):  
Jonas Hauser ◽  
Edoardo Pisa ◽  
Alejandro Arias Vásquez ◽  
Flavio Tomasi ◽  
Alice Traversa ◽  
...  

AbstractBreastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6′SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6′SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6′SL-deficient milk. To test whether lactational 6′SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6′SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6′SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ioannis Kostopoulos ◽  
Janneke Elzinga ◽  
Noora Ottman ◽  
Jay T. Klievink ◽  
Bernadet Blijenberg ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
pp. 491-502 ◽  
Author(s):  
Maria Lorna A. De Leoz ◽  
Karen M. Kalanetra ◽  
Nicholas A. Bokulich ◽  
John S. Strum ◽  
Mark A. Underwood ◽  
...  

2020 ◽  
Vol 72 ◽  
pp. 104074 ◽  
Author(s):  
Clodagh Walsh ◽  
Jonathan A. Lane ◽  
Douwe van Sinderen ◽  
Rita M. Hickey

mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Yaqiang Bai ◽  
Jia Tao ◽  
Jiaorui Zhou ◽  
Qingjie Fan ◽  
Man Liu ◽  
...  

ABSTRACT The milk glycobiome has a significant impact on the gut microbiota of infants, which plays a pivotal role in health and development. Fucosylated human milk oligosaccharides (HMOs) and N-glycans on milk proteins are beneficial for the development of healthy gut microbiota, and the fucosylation levels of these glycans can be affected by the maternal fucosyltransferase 2 gene (FUT2). Here, we present results of longitudinal research on paired milk and stool samples from 56 Chinese mothers (CMs) and their breast-fed children. Changes of HMOs and fucosylated N-glycans in milk of CMs at different lactation stages were detected, which allowed characterization of the major differences in milk glycans and consequential effects on the gut microbiome of infants according to maternal FUT2 status. Significant differences in the abundance of total and fucosylated HMOs between secretor and nonsecretor CMs were noted, especially during early lactation. Despite a tendency toward decreasing milk protein concentrations, the fucosylation levels of milk N-glycans increased during late lactation. The changes in the levels of fucosylated HMOs and milk N-glycans were highly correlated with the growth of Bifidobacterium spp. and Lactobacillus spp. in the gut of infants during early and later lactation, respectively. Enriched expression of genes encoding glycoside hydrolases, glycosyl transferases, ATP-binding cassette (ABC) transporters, and permeases in infants fed by secretor CMs contributed to the promotion of these bacteria in infants. Our data highlight the important role of fucosylated milk glycans in shaping the gut microbiome of infants and provide a solid foundation for development of “personalized” nutrition for Chinese infants. IMPORTANCE Human milk glycans provide a broad range of carbon sources for gut microbes in infants. Levels of protein glycosylation in human milk vary during lactation and may also be affected by the stages of gestation and lactation and by the secretor status of the mother. This was the first study to evaluate systematically dynamic changes in human milk oligosaccharides and fucosylated N-glycans in the milk of Chinese mothers with different secretor statuses during 6 months of lactation. Given the unique single nucleotide polymorphism site (rs1047781, A385T) on the fucosyltransferase 2 gene among Chinese populations, our report provides a specific insight into the milk glycobiome of Chinese mothers, which may exert effects on the gut microbiota of infants that differ from findings from other study cohorts.


2017 ◽  
Vol 8 (4) ◽  
pp. 563-567 ◽  
Author(s):  
J. Aakko ◽  
H. Kumar ◽  
S. Rautava ◽  
A. Wise ◽  
C. Autran ◽  
...  

Human milk oligosaccharides (HMOs) are structurally diverse unconjugated glycans with a composition unique to each lactating mother. While HMOs have been shown to have an impact on the development of infant gut microbiota, it is not well known if HMOs also already affect milk microbial composition. To address this question, we analysed eleven colostrum samples for HMO content by high-pressure liquid chromatography and microbiota composition by quantitative PCR. Higher total HMO concentration was associated with higher counts of Bifidobacterium spp. (ρ=0.63, P=0.036). A distinctive effect was seen when comparing different HMO groups: positive correlations were observed between sialylated HMOs and Bifidobacterium breve (ρ=0.84, P=0.001), and non-fucosylated/non-sialylated HMOs and Bifidobacterium longum group (ρ=0.65, P=0.030). In addition to associations between HMOs and bifidobacteria, positive correlations were observed between fucosylated HMOs and Akkermansia muciniphila (ρ=0.70, P=0.017), and between fucosylated/sialylated HMOs and Staphylococcus aureus (ρ=0.75, P=0.007). Our results suggest that the characterised HMOs have an effect on specific microbial groups in human milk. Both oligosaccharides and microbes provide a concise inoculum for the compositional development of the infant gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document