early life conditions
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 38)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hendrikus J. Wijnen ◽  
Carla W. van der Pol ◽  
Inge A. M. van Roovert-Reijrink ◽  
Joren De Smet ◽  
Aart Lammers ◽  
...  

Resilient animals can cope with environmental disturbances in life with minimal loss of function. Resilience can be enhanced by optimizing early-life conditions. In poultry, eggshell temperature (EST) during incubation and early feeding are two early-life conditions that are found to alter neonatal chick quality as well as immune response in later life. However, whether these early-life conditions affect disease resilience of chickens at later ages has never been studied yet. Hence, we studied the effects of EST [(37.8°C (control) or 36.7°C (lower)] during late incubation (≥embryonic days 17–19.5) and feeding strategy after hatch [immediately (early feeding) or 51–54 h delayed (delayed feeding)] on later-life broiler resilience in a 2 × 2 factorial arrangement. At hatch, 960 broilers of both sexes from a 54-week-old Ross breeder flock were equally divided over 32 pens (eight replicate pens per treatment combination) and grown for 6 weeks. Necrotic enteritis was induced by a single inoculation of Eimeria spp. at d 21 and repeated Clostridium perfringens inoculation (3×/d) during d 21–25. Mortality and body weight (BW) gain were measured daily during d 21–35 as indicators of resilience. Additionally, disease morbidity was assessed (gut lesions, dysbacteriosis, shedding of oocysts, footpad dermatitis, and natural antibody levels in blood). Results showed a lack of interaction between EST and feeding strategy for the vast majority of the variables. A lower EST resulted in lower BW gain at d 5 and 8 post Eimeria inoculation (P = 0.02) and more Eimeria maxima oocysts in feces at d 8 post Eimeria inoculation compared to control EST (P < 0.01). Early feeding tended to lower mortality compared to delayed feeding (P = 0.06), but BW gain was not affected by feeding strategy. Morbidity characteristics were hardly affected by EST or feeding strategy. In conclusion, a few indications were found that a lower EST during late incubation as well as delayed feeding after hatch may each impair later-life resilience to necrotic enteritis. However, these findings were not manifested consistently in all parameters that were measured, and conclusions are drawn with some restraint.


2021 ◽  
Vol 22 (21) ◽  
pp. 11872
Author(s):  
Chien-Ning Hsu ◽  
Chih-Yao Hou ◽  
Wei-Hsuan Hsu ◽  
You-Lin Tain

One of the leading global public-health burdens is metabolic syndrome (MetS), despite the many advances in pharmacotherapies. MetS, now known as “developmental origins of health and disease” (DOHaD), can have its origins in early life. Offspring MetS can be programmed by various adverse early-life conditions, such as nutrition imbalance, maternal conditions or diseases, maternal chemical exposure, and medication use. Conversely, early interventions have shown potential to revoke programming processes to prevent MetS of developmental origins, namely reprogramming. In this review, we summarize what is currently known about adverse environmental insults implicated in MetS of developmental origins, including the fundamental underlying mechanisms. We also describe animal models that have been developed to study the developmental programming of MetS. This review extends previous research reviews by addressing implementation of reprogramming strategies to prevent the programming of MetS. These mechanism-targeted strategies include antioxidants, melatonin, resveratrol, probiotics/prebiotics, and amino acids. Much work remains to be accomplished to determine the insults that could induce MetS, to identify the mechanisms behind MetS programming, and to develop potential reprogramming strategies for clinical translation.


2021 ◽  
Author(s):  
Janske van de Crommenacker ◽  
Martijn Hammers ◽  
Hannah Louise Dugdale ◽  
Terry Burke ◽  
Jan Komdeur ◽  
...  

1.Environmental conditions experienced during early life may have long-lasting effects on later-life phenotypes and fitness. Individuals experiencing poor early-life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic ‘Predictive Adaptive Response’ (PAR), whereby they respond – in terms of physiology or life-history strategy – to the conditions experienced in early life to maximise later-life fitness. In particular, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early-life conditions negatively impact an individual’s physiological state, individuals will accelerate their reproductive schedule to maximise fitness during their shorter predicted lifespan.2.We aimed to measure the impact of early-life conditions and resulting fitness across individual lifetimes to test the predictions of the FLE hypothesis in a wild, long-lived model species. 3.Using a long-term individual-based dataset, we investigated how early-life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler (Acrocephalus sechellensis). How individuals experience early-life environmental conditions may vary greatly, so we also tested whether telomere length – shorter telomers are a biomarker of an individual’s exposure to stress – can provide an effective measure of the individual-specific impact of early-life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. 4.Contrary to expectations, shorter juvenile telomere length was not associated with poor early-life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early-life conditions, were associated with age of first reproduction or the rate of early-life reproduction in either sex. These results do not support the key prediction of the Future Lifetime Expectation PAR hypothesis. 5.We found no support for the FLE hypothesis. However, at least for males, poor early-life body conditions were associated with lower first year survival and reduced longevity, indicating that poor early-life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early-life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254174
Author(s):  
Michael Topping ◽  
Jinho Kim ◽  
Jason Fletcher

Objective Accumulating evidence suggests the possibility that early life exposures may contribute to risk of Alzheimer’s Disease (AD). This paper explores geographic disparities in AD mortality based on both state of residence in older age as well as state of birth measures in order to assess the relative importance of these factors. Methods We use a subset of a large survey, the NIH-AARP Diet and Health Study, of over 150,000 individuals aged 65–70 with 15 years of mortality follow-up, allowing us to study over 1050 cases of AD mortality. We use multi-level logistic regression, where individuals are nested within states of residence and/or states of birth, to assess the contributions of place to AD mortality variation. Results We show that state of birth explains a modest amount of variation in AD mortality, approximately 4%, which is consistent with life course theories that suggest that early life conditions can produce old age health disparities. However, we also show that nearly all of the variation from state of birth is explained by state of residence in old age. Conclusions These results suggest that later life factors are potentially more consequential targets for intervention in reducing AD mortality and provide some evidence against the importance of macro-level environmental exposures at birth as a core determinant of later AD.


Author(s):  
Gabriel Pigeon ◽  
Julie Landes ◽  
Marco Festa-Bianchet ◽  
Fanie Pelletier

The rate of senescence may vary among individuals of a species according to individual life histories and environmental conditions. According to the principle of allocation, changes in mortality driven by environmental conditions influence how organisms allocate resources among costly functions. In several vertebrates, environmental conditions during early life impose trade-offs in allocation between early reproduction and maintenance. The effects of conditions experienced during early life on senescence, however, remain poorly documented in wild populations. We examined how several early-life environmental conditions affected reproductive and survival senescence in wild bighorn sheep. We found long-term effects of high population density at birth, precipitations during the winter before birth, and temperature during the winter following birth that decreased survival after 7 years of age. High temperature during the first summer and autumn of life and high Pacific decadal oscillation decreased reproductive success at old ages. However, harsh early-life environment did not influence the rate of senescence in either survival or reproduction. Contrary to our expectation, we found no trade-off between reproductive allocation prior to senescence and senescence. Our results do show that early-life environmental conditions are important drivers of later survival and reproductive success and contribute to intra-specific variation in late-life fitness, but not aging patterns. These conditions should therefore be considered when studying the mechanisms of senescence and the determinants of variation in both survival and reproductive senescence at older ages.


Author(s):  
Merijn M. G. Driessen ◽  
Maaike A. Versteegh ◽  
Yoran H. Gerritsma ◽  
B. Irene Tieleman ◽  
Ido Pen ◽  
...  

Early life conditions can impact individuals for life, with harsh developmental conditions resulting in lower fitness, but the underlying mechanisms are not well understood. We hypothesised that immune function may be part of the underlying mechanism, when harsh developmental conditions result in less effective immune function. We tested this hypothesis by comparing innate immune function between zebra finches (Taeniopygia guttata) in adulthood (n=230; age 108 – 749 days) that were reared in either small or large broods. We used this experimental background to follow up our earlier finding that finches reared in large broods have a shorter lifespan. To render a broad overview of innate immune function, we used an array of six measures: bacterial killing capacity, haemagglutination, haemolysis, haptoglobin, nitric oxide, and ovotransferrin. We found no convincing evidence for effects of natal brood size on any of the six measures of innate immune function. This raised the question whether the origin of variation in immune function was genetic, and we therefore estimated heritabilities using animal models. However, we found heritability estimates to be low (range 0.04 – 0.11) for all measured immune variables, suggesting variation in innate immune function can largely be attributed to environmental effects independent of early-life conditions as modified by natal brood size.


Author(s):  
Elizabeth Sheldon ◽  
Riccardo Ton ◽  
Winnie Boner ◽  
Pat Monaghan ◽  
Shirley Raveh ◽  
...  

Telomere length and DNA methylation (DNAm) are two promising biomarkers of biological age. Environmental factors and life history traits are known to affect variation in both these biomarkers, especially during early life, yet surprisingly little is known about their reciprocal association. Here, we present the first study on a natural population to explore how variation in DNAm, growth rate and early-life conditions are associated with telomere length changes during development. We tested these associations by collecting data from wild, nestling zebra finches in the Australian desert. We found that increases in the level of DNAm were negatively correlated with telomere length changes across early life. We also confirm previously documented effects of post hatch growth rate and clutch size on telomere length in a natural ecological context for a species that has been extensively studied in the laboratory. However, we did not detect any effect of ambient temperature during developmental on telomere dynamics. We also found that the absolute telomere length of wild zebra finches, measured using the in-gel TRF method, was similar to that of captive birds. Our findings highlight exciting new opportunities to link and disentangle potential relationships between environmental, epigenetic and telomere length dynamics during early life.


Sign in / Sign up

Export Citation Format

Share Document