scholarly journals Dynamics of PAR proteins explain the oscillation and ratcheting mechanisms in dorsal closure

2018 ◽  
Author(s):  
C.H. Durney ◽  
T.J.C. Harris ◽  
J.J. Feng

AbstractWe present a vertex-based model forDrosophiladorsal closure that predicts the mechanics of cell oscillation and contraction from the dynamics of the PAR proteins. Based on experimental observations of how aPKC, Par-6 and Bazooka migrate from the circumference of the apical surface to the medial domain, and how they interact with each other and ultimately regulate the apicomedial actomyosin, we formulate a system of differential equations that capture the key features of the process. The oscillation in cell area in the early phase of dorsal closure results from an intracellular negative feedback loop that involves myosin, an actomyosin regulator, aPKC and Bazooka. In the slow phase, gradual sequestration of apicomedial aPKC into Bazooka clusters causes incomplete disassembly of the myosin network over each cycle of oscillation, thus producing the so-called ratchet. The fast phase of rapid cell and tissue contraction arises when medial myosin, no longer hindered by aPKC, builds up in time and produces sustained contraction. Thus, a minimal set of rules governing the dynamics of the PAR proteins, extracted from experimental observations, can account for all major mechanical outcomes of dorsal closure, including the transitions between its three distinct phases.Insert Received for publication Date and in final form Date

2021 ◽  
Author(s):  
Anwesha Guru ◽  
Surat Saravanan ◽  
Deepanshu Sharma ◽  
Maithreyi Narasimha

The contraction of the amnioserosa by apical constriction provides the major force for Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generate pulsed constrictions during early dorsal closure whereas persistent apicomedial and circumapical actomyosin complexes drive the unpulsed constrictions that follow. What governs the spatiotemporal assembly of these distinct complexes, endows them with their pulsatile dynamics, and directs their motility remains unresolved. Here we identify an essential role for microtubule growth in regulating the timely contraction of the amnioserosa. We show that a symmetric cage of apical microtubules forms around the coalescing apicomedial myosin complex. An asymmetric tail of microtubules then trails the moving myosin complex and disperses as the myosin complex dissolves. Perturbing microtubule growth reduced the coalescence and movement of apicomedial myosin complexes and redistributed myosin and its activator, Rho kinase to the circumapical pool and altered the cell constriction and tissue contraction dynamics of the amnioserosa. We show that RhoGEF2, the activator of the Rho1 GTPase, is transiently associated with microtubule plus end binding protein EB1 and the apicomedial actomyosin complex. Our results suggest that microtubule growth from moving patronin platforms modulates actomyosin contractility through the spatiotemporal regulation of Rho1 activity. We propose that microtubule reorganisation enables a self-organising, mechanosensitive feedback loop that buffers the tissue against mechanical stresses by modulating actomyosin contractility.


2012 ◽  
Vol 107 (2) ◽  
pp. 704-717 ◽  
Author(s):  
Henri Gioanni ◽  
Pierre-Paul Vidal

Context-specific adaptation (Shelhamer M, Clendaniel R. Neurosci Lett 332: 200–204, 2002) explains that reflexive responses can be maintained with different “calibrations” for different situations (contexts). Which context cues are crucial and how they combine to evoke context-specific adaptation is not fully understood. Gaze stabilization in birds is a nice model with which to tackle that question. Previous data showed that when pigeons ( Columba livia) were hung in a harness and subjected to a frontal airstream provoking a flying posture (“flying condition”), the working range of the optokinetic head response [optocollic reflex (OCR)] extended toward higher velocities compared with the “resting condition.” The present study was aimed at identifying which context cues are instrumental in recalibrating the OCR. We investigated that question by using vibrating stimuli delivered during the OCR provoked by rotating the visual surroundings at different velocities. The OCR gain increase and the boost of the fast phase velocity observed during the “flying condition” were mimicked by body vibration. On the other hand, the newly emerged relationship between the fast-phase and slow-phase velocities in the “flying condition” was mimicked by head vibration. Spinal cord lesion at the lumbosacral level decreased the effects of body vibration, whereas lesions of the lumbosacral apparatus had no effect. Our data suggest a major role of muscular proprioception in the context-specific adaptation of the stabilizing behavior, while the vestibular system could contribute to the context-specific adaptation of the orienting behavior. Participation of an efferent copy of the motor command driving the flight cannot be excluded.


1987 ◽  
Vol 62 (4) ◽  
pp. 1513-1520 ◽  
Author(s):  
W. N. Richardson ◽  
D. Bilan ◽  
M. Hoppensack ◽  
L. Oppenheimer

Transvascular fluid flux was induced in six isolated blood-perfused canine lobes by increasing and decreasing hydrostatic inflow pressure (Pi). Fluid flux was followed against the change in concentration of an impermeable tracer (Blue Dextran) measured directly with a colorimetric device. The time course of fluid flux was biphasic with an initial fast transient followed by a slow phase. Hematocrit changes unrelated to fluid flux occurred due to the Fahraeus effect, and their contribution to the total color signal was subtracted to determine the rate of fast fluid flux (Qf). Qf was related to Pi to derive fast-phase conductance (Kf). Slow-phase Kf was calculated from the constant rate of change of lobe weight. For a mean change in Pi of 7 cmH2O, 40% of the color signal was due to fluid flux. Fast- and slow-phase Kf's were 0.86 +/- 0.15 and 0.27 +/- 0.05 ml X min-1. cmH2O–1 X 100 g dry wt-1. The fast-phase Kf is smaller than that reported for plasma-perfused lobes. Possible explanations discussed are the nature of the perfusate, the mechanical properties of the interstitium, and the slow rate of rise of the driving pressure at the filtration site on the basis of a distributed model of pulmonary vascular compliance.


1981 ◽  
Vol 90 (1) ◽  
pp. 187-200 ◽  
Author(s):  
W T Chen

Retraction of the taut, trailing portion of a moving chick heart fibroblast in vitro is an abrupt dynamic process. Upon retraction, the fibroblast tail always ruptures, leaving a small amount of itself attached to the substratum by focal contacts. Time-lapse cinemicrography shows that retraction produces a sudden, massive movement of both surface and cytoplasmic material toward a cluster of focal contacts near the main body of the cell. The appearance of folds on the upper cell surface at this time and the absence of endocytotic vesicles are consistent with this forward movement. Retraction of the trailing edge, either occurring naturally or produced artificially with a microneedle, consists of an initial fast component followed and overlapped by a slow component. Upon artificial detachment in the presence of iodoacetate, dinitrophenol, and sodium fluoride, and at 4 degrees C, the slow component is strongly inhibited and the fast one only slightly inhibited. Moreover of the bundles of microfilaments oriented parallel to the long axis of the tail seen in TEM. Most of the birefringence is lost during the fast phase and the rest during the slow phase of retraction. Concurrently, the bundles of microfilaments disappear during the fast phase of retraction and are replaced by a microfilament meshwork. All of these results are consistent with the hypothesis that the initial fast component of retraction is a passive elastic recoil, associated with the oriented bundles of microfilaments, and that the slow component of retraction is an active contraction, associated with a meshwork of microfilaments.


1985 ◽  
Vol 227 (2) ◽  
pp. 439-455 ◽  
Author(s):  
P M Bayley ◽  
F M M Butler ◽  
D C Clark ◽  
E J Manser ◽  
S R Martin

The kinetics of assembly were studied for bovine and pig microtubule protein in vitro over a range of conditions of pH, temperature, nucleotide and protein concentration. The kinetics are in general biphasic with two major processes of similar amplitude but separated in rate by one order of magnitude. Rates and amplitudes are complex functions of solution conditions. The rates of the fast phase and the slow phase attain limiting values as a function of increasing protein concentration, and are more stringently limited at pH 6.5 than pH 6.95. Such behaviour indicates that mechanisms other than the condensation polymerization of tubulin dimer become rate-limiting at higher protein concentration. The constancy of the wavelength-dependence of light-scattering and ultrastructural criteria indicate that microtubules of normal morphology are formed in both phases of the assembly process. Electrophoretic analysis of assembling microtubule protein shows that MAP- (microtubule-associated-protein-)rich microtubules are formed during the fast phase. The rate of dissociation of oligomeric species on dilution of microtubule protein closely parallels the fast-phase rate in magnitude and temperature-dependence. We propose that the rate of this process constitutes an upper limit to the rate of the fast phase of assembly. The kinetics of redistribution of MAPs from MAP-rich microtubules may be a factor limiting the slow-phase rate. A working model is derived for the self-assembly of microtubule protein incorporating the dissociation and redistribution mechanisms that impose upper limits to the rates of assembly attainable by bimolecular addition reactions. Key roles are assigned to MAP-containing fragments in both phases of microtubule elongation. Variations in kinetic behaviour with solution conditions are inferred to derive from the nature and properties of fragments formed from oligomeric species after the rapid temperature jump. The model accounts for the limiting rate behaviour and indicates experimental criteria to be applied in evaluating the relative contributions of alternative pathways.


2018 ◽  
Vol 115 (11) ◽  
pp. 2230-2241 ◽  
Author(s):  
Clinton H. Durney ◽  
Tony J.C. Harris ◽  
James J. Feng
Keyword(s):  

1973 ◽  
Vol 59 (1) ◽  
pp. 17-38
Author(s):  
D. C. SANDEMAN ◽  
A. OKAJIMA

1. The sensory axons of the thread hair receptors, free hook hair receptors and most receptors of the statolith area of the crab statocyst all project to the same dorsolateral part of the brain. Large sensory receptors which innervate some hairs surrounding the statolith project to a more ventral site, and send some branches across to the contralateral side of the brain. 2. The central projections of oculomotor neurones have a characteristically open branch pattern and their dendritic field corresponds closely with that of the thread hairs. There are no branches extending to the contralateral side of the brain. 3. Intracellular responses from the motor neurones of horizontal eye-movement muscles during nystagmus show that they are probably directly inhibited during a fast-phase movement of the eye opposite to the direction in which they act. During a slow-phase eye movement opposite to their preferred direction the input to the motor neurones is diminished pre-synaptically. 4. Sets of antagonist motor neurones maintain a fairly rigid relationship to one another so that an increase in activity of one set leads to a decrease in the antagonists. Neither this, nor the onset of the fast phase of nystagmus, is governed by proprioceptive input or by the frequency of discharge of the motor neurones themselves.


1998 ◽  
Vol 274 (6) ◽  
pp. C1608-C1615 ◽  
Author(s):  
Philip A. Wahr ◽  
J. David Johnson ◽  
Jack. A. Rall

The influences of sarcomere uniformity and Ca2+ concentration on the kinetics of relaxation were examined in skinned frog skeletal muscle fibers induced to relax by rapid sequestration of Ca2+ by the photolysis of the Ca2+ chelator, diazo-2, at 10°C. Compared with an intact fiber, diazo-2-induced relaxation exhibited a faster and shorter initial slow phase and a fast phase with a longer tail. Stabilization of the sarcomeres by repeated releases and restretches during force development increased the duration of the slow phase and slowed its kinetics. When force of contraction was decreased by lowering the Ca2+concentration, the overall kinetics of relaxation was accelerated, with the slow phase being the most sensitive to Ca2+ concentration. Twitchlike contractions were induced by photorelease of Ca2+ from a caged Ca2+ (DM-Nitrophen), with subsequent Ca2+ sequestration by intact sarcoplasmic reticulum or Ca2+ rebinding to caged Ca2+. These twitchlike responses exhibited relaxation kinetics that were about twofold slower than those observed in intact fibers. Results suggest that the slow phase of relaxation is influenced by the degree of sarcomere homogeneity and rate of Ca2+ dissociation from thin filaments. The fast phase of relaxation is in part determined by the level of Ca2+ activation.


1997 ◽  
Vol 78 (4) ◽  
pp. 2203-2216 ◽  
Author(s):  
Bernhard J. M. Hess ◽  
Dora E. Angelaki

Hess, Bernhard J. M. and Dora E. Angelaki. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position. J. Neurophysiol. 78: 2203–2216, 1997. The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 ± 0.4° (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation (∼1.4–2.6°). This reduced torsional variation was in contrast to the large torsional spread (well >10–15°) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.


2002 ◽  
Vol 361 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Luis M. BREDESTON ◽  
Alcides F. REGA

Pre-steady-state phosphorylation and dephosphorylation of purified and phospholipid-depleted plasma-membrane Ca2+-ATPase (PMCA) solubilized in the detergent polyoxyethylene 10 lauryl ether were studied at 25°C. The time course of phosphorylation with ATP of the enzyme associated with Ca2+, probably the true phosphorylation reaction, showed a fast phase (kapp near 400s−1) followed by a slow phase (kapp = 23s−1). With asolectin or acidic phosphatidylinositol, the concentration of phosphoenzyme (EP) increased at as high a rate as before, passed through a maximum at 4ms and stabilized at a steady level that was approx. half that without lipids. Calmodulin (CaM) did not change the rate of the fast phase, accelerated the slow phase (kapp = 93s−1) and increased [EP] with small changes in the shape of the time course. Dephosphorylation was slow (kapp = 30s−1) and insensitive to CaM. Asolectin accelerated dephosphorylation, which followed biexponential kinetics with fast (kapp = 220s−1) and slow (kapp = 20s−1) components. CaM stimulated the fast component by nearly 50%. The results show that the behaviour of the PMCA is complex, and suggest that acidic phospholipids and CaM activate PMCA through different mechanisms. Acceleration of dephosphorylation seems relevant during activation of the PMCA by acidic phospholipids.


Sign in / Sign up

Export Citation Format

Share Document