scholarly journals Genome-wide analysis of the role of the antibiotic biosynthesis regulator AbsA2 inStreptomyces coelicolorA3(2)

2018 ◽  
Author(s):  
Richard A. Lewis ◽  
Abdul Wahab ◽  
Giselda Bucca ◽  
Emma E. Laing ◽  
Carla Möller-Levet ◽  
...  

AbstractThe AbsA1-AbsA2 two component signalling system ofStreptomyces coelicolorhas long been known to exert a powerful negative influence on the production of the antibiotics actinorhodin, undecylprodiginine and the Calcium-Dependent Antibiotic (CDA). Here we report the analysis of aΔabsA2deletion strain, which exhibits the classic precocious antibiotic hyper-production phenotype, and its complementation by an N-terminal triple-FLAG-tagged version of AbsA2. The complemented and non-complementedΔabsA2mutant strains were used in large-scale microarray-based time-course experiments to investigate the effect of deletingabsA2on gene expression and to identify thein vivoAbsA2 DNA-binding target sites using ChIP-on chip. We show that in addition to binding to the promoter regions ofredZandactII-orfIVAbsA2 binds to several previously unidentified sites within thecdabiosynthetic gene cluster within and/or upstream ofSCO3215-SCO3216,SCO3217,SCO3229-SCO3230, andSCO3226, and we relate the pattern of AbsA2 binding to the results of the transcriptomic study and antibiotic phenotypic assays. Interestingly, dual ‘biphasic’ ChIP peaks were observed with AbsA2 binding across the regulatory genesactII-orfIVandredZand theabsA2gene itself, while more conventional single promoter-proximal peaks were seen at the CDA biosynthetic genes suggesting a different mechanism of regulation of the former loci. Taken together the results shed light on the complex mechanism of regulation of antibiotic biosynthesis inStreptomyces coelicolorand the important role of AbsA2 in controlling the expression of three antibiotic biosynthetic gene clusters.

Author(s):  
Rebecca Devine ◽  
Hannah McDonald ◽  
Zhiwei Qin ◽  
Corinne Arnold ◽  
Katie Noble ◽  
...  

AbstractThe formicamycins are promising antibiotics with potent activity against Gram-positive pathogens including VRE and MRSA and display a high barrier to selection of resistant isolates. They were first identified in Streptomyces formicae KY5, which produces the formicamycins at low levels on solid agar but not in liquid culture, thus hindering further investigation of these promising antibacterial compounds. We hypothesised that by understanding the organisation and regulation of the for biosynthetic gene cluster, we could rationally refactor the cluster to increase production levels. Here we report that the for biosynthetic gene cluster consists of 24 genes expressed on nine transcripts. Seven of these transcripts, including those containing all the major biosynthetic genes, are repressed by the MarR-regulator ForJ which also controls the expression of the ForGF two-component system that initiates biosynthesis. A third cluster-situated regulator, ForZ, autoregulates and controls production of the putative MFS transporter ForAA. Consistent with these findings, deletion of forJ increased formicamycin biosynthesis 5-fold, while over-expression of forGF in the ΔforJ background increased production 10-fold compared to the wild-type. De-repression by deleting forJ also switched on biosynthesis in liquid-culture and induced the production of two novel formicamycin congeners. By combining mutations in regulatory and biosynthetic genes, six new biosynthetic precursors with antibacterial activity were also isolated. This work demonstrates the power of synthetic biology for the rational redesign of antibiotic biosynthetic gene clusters both to engineer strains suitable for fermentation in large scale bioreactors and to generate new molecules.ImportanceAntimicrobial resistance is a growing threat as existing antibiotics become increasingly ineffective against drug resistant pathogens. Here we determine the transcriptional organisation and regulation of the gene cluster encoding biosynthesis of the formicamycins, promising new antibiotics with activity against drug resistant bacteria. By exploiting this knowledge, we construct stable mutant strains which over-produce these molecules in both liquid and solid culture whilst also making some new compound variants. This will facilitate large scale purification of these molecules for further study including in vivo experiments and the elucidation of their mechanism of action. Our work demonstrates that understanding the regulation of natural product biosynthetic pathways can enable rational improvement of the producing strains.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Ye Xu ◽  
Andrew Willems ◽  
Catherine Au-yeung ◽  
Kapil Tahlan ◽  
Justin R. Nodwell

ABSTRACT Many microorganisms produce secondary metabolites that have antibiotic activity. To avoid self-inhibition, the producing cells often encode cognate export and/or resistance mechanisms in the biosynthetic gene clusters for these molecules. Actinorhodin is a blue-pigmented antibiotic produced by Streptomyces coelicolor. The actAB operon, carried in the actinorhodin biosynthetic gene cluster, encodes two putative export pumps and is regulated by the transcriptional repressor protein ActR. In this work, we show that normal actinorhodin yields require actAB expression. Consistent with previous in vitro work, we show that both actinorhodin and its 3-ring biosynthetic intermediates [e.g., (S)-DNPA] can relieve repression of actAB by ActR in vivo. Importantly, an ActR mutant that interacts productively with (S)-DNPA but not with actinorhodin responds to the actinorhodin biosynthetic pathway with the induction of actAB and normal yields of actinorhodin. This suggests that the intermediates are sufficient to trigger the export genes in actinorhodin-producing cells. We further show that actinorhodin-producing cells can induce actAB expression in nonproducing cells; however, in this case actinorhodin is the most important signal. Finally, while the “intermediate-only” ActR mutant permits sufficient actAB expression for normal actinorhodin yields, this expression is short-lived. Sustained culture-wide expression requires a subsequent actinorhodin-mediated signaling step, and the defect in this response causes widespread cell death. These results are consistent with a two-step model for actinorhodin export and resistance where intermediates trigger initial expression for export from producing cells and actinorhodin then triggers sustained export gene expression that confers culture-wide resistance. IMPORTANCE Understanding the links between antibiotic resistance and biosynthesis is important for our efforts to manipulate secondary metabolism. For example, many secondary metabolites are produced at low levels; our work suggests that manipulating export might be one way to enhance yields of these molecules. It also suggests that understanding resistance will be relevant to the generation of novel secondary metabolites through the creation of synthetic secondary metabolic gene clusters. Finally, these cognate resistance mechanisms are related to mechanisms that arise in pathogenic bacteria, and understanding them is relevant to our ability to control microbial infections clinically.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hye-Seon Kim ◽  
Jessica M. Lohmar ◽  
Mark Busman ◽  
Daren W. Brown ◽  
Todd A. Naumann ◽  
...  

Abstract Background Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. Results Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. Conclusion Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.


2004 ◽  
Vol 186 (5) ◽  
pp. 1345-1354 ◽  
Author(s):  
Olga N. Sekurova ◽  
Trygve Brautaset ◽  
Håvard Sletta ◽  
Sven E. F. Borgos ◽  
Øyvind M. Jakobsen ◽  
...  

ABSTRACT Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 510
Author(s):  
Nils Böhringer ◽  
Maria A. Patras ◽  
Till F. Schäberle

Pseudouridimycin (PUM) was recently discovered from Streptomyces sp. DSM26212 as a novel bacterial nucleoside analog that competes with UTP for access to the RNA polymerase (RNAP) active site, thereby inhibiting bacterial RNAP by blocking transcription. This represents a novel antibacterial mode of action and it is known that PUM inhibits bacterial RNAP in vitro, inhibits bacterial growth in vitro, and was active in vivo in a mouse infection model of Streptococcus pyogenes peritonitis. The biosynthetic gene cluster (BGC) was previously identified and characterized by knockout experiments. However, the minimal set of genes necessary for PUM production was not proposed. To identify the minimal BGC and to create a plug-and-play production platform for PUM and its biosynthetic precursors, several versions of a redesigned PUM BGC were generated and expressed in the heterologous host Streptomyces coelicolor M1146 under control of strong promotors. Heterologous expression allowed identification of the putative serine/threonine kinase PumF as an enzyme essential for heterologous PUM production and thus corroboration of the PUM minimal BGC.


2020 ◽  
Vol 86 (9) ◽  
Author(s):  
Yanping Zhu ◽  
Wenhao Xu ◽  
Jing Zhang ◽  
Peipei Zhang ◽  
Zhilong Zhao ◽  
...  

ABSTRACT The four regulatory genes fscR1 to fscR4 in Streptomyces sp. strain FR-008 form a genetic arrangement that is widely distributed in macrolide-producing bacteria. Our previous work has demonstrated that fscR1 and fscR4 are critical for production of the polyene antibiotic candicidin. In this study, we further characterized the roles of the other two regulatory genes, fscR2 and fscR3, focusing on the relationship between these four regulatory genes. Disruption of a single or multiple regulatory genes did not affect bacterial growth, but transcription of genes in the candicidin biosynthetic gene cluster decreased, and candicidin production was abolished, indicating a critical role for each of the four regulatory genes, including fscR2 and fscR3, in candicidin biosynthesis. We found that fscR1 to fscR4, although differentially expressed throughout the growth phase, displayed similar temporal expression patterns, with an abrupt increase in the early exponential phase, coincident with initial detection of antibiotic production in the same phase. Our data suggest that the four regulatory genes fscR1 to fscR4 have various degrees of control over structural genes in the biosynthetic cluster under the conditions examined. Extensive transcriptional analysis indicated that complex regulation exists between these four regulatory genes, forming a regulatory network, with fscR1 and fscR4 functioning at a lower level. Comprehensive cross-complementation analysis indicates that functional complementation is restricted among the four regulators and unidirectional, with fscR1 complementing the loss of fscR3 or -4 and fscR4 complementing loss of fscR2. Our study provides more insights into the roles of, and the regulatory network formed by, these four regulatory genes controlling production of an important pharmaceutical compound. IMPORTANCE The regulation of antibiotic biosynthesis by Streptomyces species is complex, especially for biosynthetic gene clusters with multiple regulatory genes. The biosynthetic gene cluster for the polyene antibiotic candicidin contains four consecutive regulatory genes, which encode regulatory proteins from different families and which form a subcluster within the larger biosynthetic gene cluster in Streptomyces sp. FR-008. Syntenic arrangements of these regulatory genes are widely distributed in polyene gene clusters, such as the amphotericin and nystatin gene clusters, suggesting a conserved regulatory mechanism controlling production of these clinically important medicines. However, the relationships between these multiple regulatory genes are unknown. In this study, we determined that each of these four regulatory genes is critical for candicidin production. Additionally, using transcriptional analyses, bioassays, high-performance liquid chromatography (HPLC) analysis, and genetic cross-complementation, we showed that FscR1 to FscR4 comprise a hierarchical regulatory network that controls candicidin production and is likely representative of how expression of other polyene biosynthetic gene clusters is controlled.


Microbiology ◽  
2003 ◽  
Vol 149 (7) ◽  
pp. 1633-1645 ◽  
Author(s):  
Koji Ichinose ◽  
Makoto Ozawa ◽  
Keiko Itou ◽  
Kanako Kunieda ◽  
Yutaka Ebizuka

Medermycin is a Streptomyces aromatic C-glycoside antibiotic classified in the benzoisochromanequinones (BIQs), which presents several interesting biosynthetic problems concerning polyketide synthase (PKS), post-PKS tailoring and deoxysugar pathways. The biosynthetic gene cluster for medermycin (the med cluster) was cloned from Streptomyces sp. AM-7161. Completeness of the clone was proved by the heterologous expression of a cosmid carrying the entire med cluster in Streptomyces coelicolor CH999 to produce medermycin. The DNA sequence of the cosmid (36 202 bp) revealed 34 complete ORFs, with an incomplete ORF at either end. Functional assignment of the deduced products was made for PKS and biosynthetically related enzymes, tailoring steps including strereochemical control, oxidation, angolosamine pathway, C-glycosylation, and regulation. The med cluster was estimated to be about 30 kb long, covering 29 ORFs. An unusual characteristic of the cluster is the disconnected organization of the minimal PKS genes: med-ORF23 encoding the acyl carrier protein is 20 kb apart from med-ORF1 and med-ORF2 for the two ketosynthase components. Secondly, the six genes (med-ORF14, 15, 16, 17, 18 and 20) for the biosynthesis of the deoxysugar, angolosamine, are all contiguous. Finally, the finding of a glycosyltransferase gene, med-ORF8, suggests a possible involvement of conventional C-glycosylation in medermycin biosynthesis. Comparison among the three complete BIQ gene clusters – med and those for actinorhodin (act) and granaticin (gra) – revealed some common genes whose deduced functions are unavailable from database searches (the ‘unknowns’). An example is med-ORF5, a homologue of actVI-ORF3 and gra-ORF18, which was highlighted by a recent proteomic analysis of S. coelicolor A3(2).


Author(s):  
Kirstin I. Arend ◽  
Julia E. Bandow

Streptomyces chartreusis NRRL 3882 produces the polyether ionophore calcimycin and a variety of analogs, which originate from the same biosynthetic gene cluster. The role of calcimycin and its analogs for the producer is unknown, but calcimycin has strong antibacterial activity. Feeding experiments were performed in chemically defined medium systematically supplemented with proteinogenic amino acids to analyze their individual effects on calcimycin synthesis. In the culture supernatants, in addition to known calcimycin analogs, eight so far unknown analogs were detected using LC-MS/MS. Under most conditions cezomycin was the compound produced in highest amounts. The highest production of calcimycin was detected upon feeding with glutamine. Supplementation of the medium with glutamic acid resulted in a decrease in calcimycin production, and supplementation of other amino acids such as tryptophan, lysine, and valine resulted in the decrease in the synthesis of calcimycin and of the known intermediates of the biosynthetic pathway. We demonstrated that the production of calcimycin and its analogs is strongly dependent on amino acid supply. Utilization of amino acids as precursors and as nitrogen sources seem to critically influence calcimycin synthesis. Even amino acids not serving as direct precursors resulted in a different product profile regarding the stoichiometry of calcimycin analogs. Only slight changes in cultivation conditions can lead to major changes in the metabolic output, which highlights the hidden potential of biosynthetic gene clusters. We emphasize the need to further study the extent of this potential to understand the ecological role of metabolite diversity originating from single biosynthetic gene clusters.


2015 ◽  
Author(s):  
Pablo Cruz-Morales ◽  
Christian E. Martínez-Guerrero ◽  
Marco A. Morales-Escalante ◽  
Luis Yáñez-Guerra ◽  
Johannes Florian Kopp ◽  
...  

AbstractNatural products have provided humans with antibiotics for millennia. However, a decline in the pace of chemical discovery exerts pressure on human health as antibiotic resistance spreads. The empirical nature of current genome mining approaches used for natural products research limits the chemical space that is explored. By integration of evolutionary concepts related to emergence of metabolism, we have gained fundamental insights that are translated into an alternative genome mining approach, termed EvoMining. As the founding assumption of EvoMining is the evolution of enzymes, we solved two milestone problems revealing unprecedented conversions. First, we report the biosynthetic gene cluster of the ‘orphan’ metabolite leupeptin in Streptomyces roseus. Second, we discover an enzyme involved in formation of an arsenic-carbon bond in Streptomyces coelicolor and Streptomyces lividans. This work provides evidence that bacterial chemical repertoire is underexploited, as well as an approach to accelerate the discovery of novel antibiotics from bacterial genomes.


2017 ◽  
Vol 114 (27) ◽  
pp. 7025-7030 ◽  
Author(s):  
Nicholas C. Harris ◽  
Michio Sato ◽  
Nicolaus A. Herman ◽  
Frederick Twigg ◽  
Wenlong Cai ◽  
...  

A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.


Sign in / Sign up

Export Citation Format

Share Document