scholarly journals Parallel genetic evolution and speciation from standing variation

2018 ◽  
Author(s):  
Ken A. Thompson ◽  
Matthew M. Osmond ◽  
Dolph Schluter

AbstractAdaptation often proceeds via the sorting of standing variation, and natural selection acting on pairs of populations is a quantitative continuum ranging from parallel to divergent. Yet, it is unclear how the extent of parallel genetic evolution during adaptation from standing variation is affected by the difference in the direction of selection between populations. Nor is it clear whether the availability of standing variation for adaptation affects progress toward speciation in a manner that depends on the difference in the direction of selection. We conducted a theoretical study investigating these questions and have two primary findings. First, the extent of parallel genetic evolution between two populations is expected to rapidly decline as the difference in their directions of selection increases from fully parallel toward divergent, and this decline occurs more rapidly in organisms with greater trait ‘dimensionality’. This rapid decline results because seemingly small differences in the direction of selection cause steep reductions in the fraction of alleles that are beneficial in both populations. For example, populations adapting to optima separated by an angle of 33° have only 50% of potentially beneficial alleles in common (for a case of five trait ‘dimensions’). Second, we find that adaptation from standing variation leads to higher ecologically-dependent hybrid fitness under parallel selection, relative to when adaptation is from new mutation only. This occurs because genetic parallelism based on standing variation reduces the phenotypic segregation variance in hybrids when parents adapt to similar environments. In contrast, under divergent selection, the pleiotropic effects of alternative alleles fixed from standing variation change the major axes of phenotypic variation in hybrids and reduce their fitness in parental habitats. We conclude that adaptation from standing genetic variation is expected to slow progress toward speciation via parallel natural selection and can facilitate progress toward speciation via divergent natural selection.Impact summaryIt is increasingly clear that much of adaptation, especially that which occurs rapidly, proceeds from the sorting of ancestral standing variation rather than complete reliance on de novo mutation. In addition, evolutionary biologists are increasingly embracing the fact that the difference in the direction of natural selection on pairs of populations is a quantitative continuum ranging from completely parallel to completely divergent. In this article, we ask two questions. First, how does the degree of genetic parallelism—here, adaptation using the same alleles in allopatric populations—depend on the differences in the direction of natural selection acting on two populations, from parallel (0°) to divergent (180°)? And second, how does adaptation from standing variation affect progress toward speciation, and does its effect depend on the direction of natural selection? We develop theory to address these questions. We first find that very small differences in the direction of selection (angle) can largely preclude genetic parallelism. Second, we find that adaptation from standing variation has implications for speciation that change along the continuum from parallel to divergent selection. Under parallel selection, high genetic parallelism causes inter-population hybrids to have high mean fitness when their parents adapt from standing variation. As selection tends toward divergent, adaptation from standing variation is less beneficial for hybrid fitness and under completely divergent selection causes inter-population hybrids to have lower mean fitness than when adaptation was from new mutation alone. In sum, our results provide general insight into patterns of genetic parallelism and speciation along the continuum of parallel to divergent natural selection when adaptation is from standing variation.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Aneil F. Agrawal ◽  
Jeffrey L. Feder ◽  
Patrik Nosil

The evolution of intrinsic postmating isolation has received much attention, both historically and in recent studies of speciation genes. Intrinsic isolation often stems from between-locus genetic incompatibilities, where alleles that function well within species are incompatible with one another when brought together in the genome of a hybrid. It can be difficult for such incompatibilities to originate when populations diverge with gene flow, because deleterious genotypic combinations will be created and then purged by selection. However, it has been argued that if genes underlying incompatibilities are themselves subject to divergent selection, then they might overcome gene flow to diverge between populations, resulting in the origin of incompatibilities. Nonetheless, there has been little explicit mathematical exploration of such scenarios for the origin of intrinsic incompatibilities during ecological speciation with gene flow. Here we explore theoretical models for the origin of intrinsic isolation where genes subject to divergent natural selection also affect intrinsic isolation, either directly or via linkage disequilibrium with other loci. Such genes indeed overcome gene flow, diverge between populations, and thus result in the evolution of intrinsic isolation. We also examine barriers to neutral gene flow. Surprisingly, we find that intrinsic isolation sometimes weakens this barrier, by impeding differentiation via ecologically based divergent selection.



2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Liudmyla Vasylenko ◽  
Marcus W. Feldman ◽  
Adi Livnat

Abstract Background Many hypotheses have been proposed for how sexual reproduction may facilitate an increase in the population mean fitness, such as the Fisher-Muller theory, Muller’s ratchet and others. According to the recently proposed mixability theory, however, sexual recombination shifts the focus of natural selection away from favoring particular genetic combinations of high fitness towards favoring alleles that perform well across different genetic combinations. Mixability theory shows that, in finite populations, because sex essentially randomizes genetic combinations, if one allele performs better than another across the existing combinations of alleles, that allele will likely also perform better overall across a vast space of untested potential genotypes. However, this superiority has been established only for a single-locus diploid model. Results We show that, in both haploids and diploids, the power of randomization by sex extends to the multilocus case, and becomes substantially stronger with increasing numbers of loci. In addition, we make an explicit comparison between the sexual and asexual cases, showing that sexual recombination is the cause of the randomization effect. Conclusions That the randomization effect applies to the multilocus case and becomes stronger with increasing numbers of loci suggests that it holds under realistic conditions. One may expect, therefore, that in nature the ability of an allele to perform well in interaction with existing genetic combinations is indicative of how well it will perform in a far larger space of potential combinations that have not yet materialized and been tested. Randomization plays a similar role in a statistical test, where it allows one to draw an inference from the outcome of the test in a small sample about its expected outcome in a larger space of possibilities—i.e., to generalize. Our results are relevant to recent theories examining evolution as a learning process. Reviewers This article was reviewed by David Ardell and Brian Golding.



Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.



2000 ◽  
Vol 25 (2) ◽  
pp. 101-132 ◽  
Author(s):  
András Vargha ◽  
Harold D. Delaney

McGraw and Wong (1992) described an appealing index of effect size, called CL, which measures the difference between two populations in terms of the probability that a score sampled at random from the first population will be greater than a score sampled at random from the second. McGraw and Wong introduced this "common language effect size statistic" for normal distributions and then proposed an approximate estimation for any continuous distribution. In addition, they generalized CL to the n-group case, the correlated samples case, and the discrete values case. In the current paper a different generalization of CL, called the A measure of stochastic superiority, is proposed, which may be directly applied for any discrete or continuous variable that is at least ordinally scaled. Exact methods for point and interval estimation as well as the significance tests of the A = .5 hypothesis are provided. New generalizations ofCL are provided for the multi-group and correlated samples cases.



Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 667-673 ◽  
Author(s):  
W Jason Kennington ◽  
Julia Gockel ◽  
Linda Partridge

AbstractAsymmetrical gene flow is an important, but rarely examined genetic parameter. Here, we develop a new method for detecting departures from symmetrical migration between two populations using microsatellite data that are based on the difference in the proportion of private alleles. Application of this approach to data collected from wild-caught Drosophila melanogaster along a latitudinal body-size cline in eastern Australia revealed that asymmetrical gene flow could be detected, but was uncommon, nonlocalized, and occurred in both directions. We also show that, in contrast to the findings of a previous study, there is good evidence to suggest that the cline experiences significant levels of gene flow between populations.



2009 ◽  
Vol 18 (14) ◽  
pp. 3110-3119 ◽  
Author(s):  
T. TAKAHASHI ◽  
K. WATANABE ◽  
H. MUNEHARA ◽  
L. RÜBER ◽  
M. HORI


2020 ◽  
Vol 6 ◽  
pp. 1-4
Author(s):  
Stanislav K Korb

We submitted first results of the DNA studies of the Central Asiatic owlet moths of the genus Euchalcia. Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of six specimens belonging to Euchalcia herrichi and Euchalcia gyulai. We compared the received sequences between discussed species and with two European Euchalcia species (E. variabilis and E. consona). We found no variability within the COI sequences of the samples collected in the same locality (Alai Mts., Kyrgyzstan), whereas the difference in COI sequences between two populations (Ketmen Mts., Kazakhstan and Alai Mts., Kyrgyzstan) was 0.005.



1971 ◽  
Vol 29 (3) ◽  
pp. 975-982
Author(s):  
Anne Marie Bercik ◽  
John H. Mueller

Schizophrenic and control Ss were compared on the method of generated responses (MGR) and conventional paired-associates (PA), using lists of stimuli which elicited either primarily one response or several responses. The low-dominance list was more difficult, and schizophrenics were generally slower in learning. The MGR, with Ss producing their own responses, was easier than conventional PA (yoked controls). While the MGR reduced the difference between the low- and high-dominance lists, it did not do so differentially for the two populations. The results were discussed in terms of Broen and Storms' theory of “collapsed” response hierarchies in schizophrenia.



2021 ◽  
Vol 13 (2) ◽  
pp. 145-152
Author(s):  
Mohammad Mahdi Hatef ◽  

Evolutionary models for scientific change are generally based on an analogy between scientific changes and biological evolution. Some dissimilarity cases, however, challenge this analogy. An issue discussed in this essay is that despite natural evolution, which is currently considered to be non-globally progressive, science is a phenomenon that we understand as globally progressive. David Hull's solution to this disanalogy is to trace the difference back to their environments, in which processes of natural selection and conceptual selection occur. I will provide two arguments against this solution, showing that Hull's formulation of natural selection prohibits him from removing the environment from the selection process. Then I point to a related tension in his theory, between realism and externalism in science, and give some suggestions to solve these tensions.



2021 ◽  
pp. 125-154
Author(s):  
Áki J. Láruson ◽  
Floyd A. Reed

Here non-random shifts in allele frequencies over time are introduced, as well as how to incorporate varying levels of selection into a model of a single population through time. This chapter highlights the difference between weak and strong selection, the dynamics of single allele versus genotype-level selection, and how selection strength and population size affect allele frequency distributions over time. Finally the inference of the selection coefficient from allele frequency data is discussed, alongside the concepts of overdominance and underdominance.



Sign in / Sign up

Export Citation Format

Share Document