scholarly journals The ecological cocktail party: Measuring brain activity during an auditory oddball task with background noise

2018 ◽  
Author(s):  
Joanna E. M. Scanlon ◽  
Danielle L. Cormier ◽  
Kimberley A. Townsend ◽  
Jonathan W.P. Kuziek ◽  
Kyle E. Mathewson

AbstractMost experiments using EEG recordings take place in highly isolated and restricted environments, limiting their applicability to real-life scenarios. New technologies for mobile EEG are changing this by allowing EEG recording to take place outside of the laboratory. However, before results from experiments performed outside the laboratory can be fully understood, the effects of ecological stimuli on brain activity during cognitive tasks must be examined. In this experiment, participants performed an auditory oddball task while also listening to concurrent background noises of silence, white noise and outdoor ecological sounds, as well as a condition in which the tones themselves were at a low volume. We found a significantly increased N1 and decreased P2 when participants performed the task with outdoor sounds and white noise in the background, with the largest differences in the outdoor sound condition. This modulation in the N1 and P2 replicates what we have previously found outside while people ride bicycles (Scanlon et al., 2017b). No behavioural differences were found in response to the target tones. We interpret these modulations in early ERPs as indicative of sensory filtering of background sounds, and that ecologically valid sounds require more filtering than synthetic sounds. Our results reveal that much of what we understand about the brain will need to be updated as we step outside the lab.

2019 ◽  
Vol 56 (11) ◽  
Author(s):  
Joanna E. M. Scanlon ◽  
Danielle L. Cormier ◽  
Kimberley A. Townsend ◽  
Jonathan W. P. Kuziek ◽  
Kyle E. Mathewson

2013 ◽  
Vol 479-480 ◽  
pp. 517-523
Author(s):  
Ming Chung Ho ◽  
Chin Fei Huang ◽  
Chia Yi Chou ◽  
Ming Chi Lu ◽  
Yung Yi Chang ◽  
...  

Recent changes in ongoing background activity are one of the most popular approaches to investigate brain activity for understanding child development. However, research using event-related responses of cortico-cortical connections to explore changes during childhood is rare. This study investigates mature changes in brain connectivity in associative reorganization patterns and hypothesizes that age-related changes affect oscillatory connections. The sample included children aged 7 years, 11 years, and adults. The 3 groups were studied in the time-frequency domain to analyze event-related cross phase coherence (ERPCOH) between different parts of the brain as they performed an auditory oddball task. Compared to the adult participants, the 11-year-old participants were found to have increased connectivity in theta (4-7 Hz), beta-2 (20-30 Hz), and gamma bands (30-50 Hz) in the early component (N1, 80-140 ms), although ERPCOH value decreased in the alpha-1 (7-10 Hz) and alpha-2 bands (10-13 Hz). Compared to the 11-year-old participants, 7-year-old participants had greater connectivity decreases in all frequency bands, most significantly in theta, beta-2, and gamma bands.


2017 ◽  
Author(s):  
Joanna E. M. Scanlon ◽  
Kimberley A. Townsend ◽  
Danielle L. Cormier ◽  
Jonathan W. P. Kuziek ◽  
Kyle E. Mathewson

AbstractMobile EEG allows the investigation of brain activity in increasingly complex environments. In this study, EEG equipment was adapted for use and transportation in a backpack while cycling. Participants performed an auditory oddball task while cycling outside and sitting in an isolated chamber inside the lab. Cycling increased EEG noise and marginally diminished alpha amplitude. However, this increased noise did not influence the ability to measure reliable event related potentials (ERP). The P3 was similar in topography, and morphology when outside on the bike, with a lower amplitude in the outside cycling condition. There was only a minor decrease in the statistical power to measure reliable ERP effects. Unexpectedly, when biking outside significantly decreased P2 and increased N1 amplitude were observed when evoked by both standards and targets compared with sitting in the lab. This may be due to attentional processes filtering the overlapping sounds between the tones used and similar environmental frequencies. This study established methods for mobile recording of ERP signals. Future directions include investigating auditory P2 filtering inside the laboratory.HighlightsA backpack containing all the equipment necessary to record ERP and EEG was worn by participants as they rode a bicycle outside along a streetEEG and ERP data from an auditory oddball task is compared with data acquired within subject inside the labReliable MMN/N2b and P3 responses were measured during bicycle riding outside equal in magnitude to those obtained inside the labA surprising decrease in the P2 component of the ERP evoked by targets and standards was observed when doing the task outside on a bicycle, which we attribute to increased auditory filtering


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 286
Author(s):  
Soheil Keshmiri

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3918 ◽  
Author(s):  
Goded Shahaf ◽  
Pora Kuperman ◽  
Yuval Bloch ◽  
Shahak Yariv ◽  
Yelena Granovsky

Migraine attacks can cause significant discomfort and reduced functioning for days at a time, including the pre-ictal and post-ictal periods. During the inter-ictsal period, however, migraineurs seem to function normally. It is puzzling, therefore, that event-related potentials of migraine patients often differ in the asymptomatic and inter-ictal period. Part of the electrophysiological dynamics demonstrated in the migraine cycle are attention related. In this pilot study we evaluated an easy-to-use new marker, the Brain Engagement Index (BEI), for attention monitoring during the migraine cycle. We sampled 12 migraine patients for 20 days within one calendar month. Each session consisted of subjects’ reports of stress level and migraine-related symptoms, and a 5 min EEG recording, with a 2-electrode EEG device, during an auditory oddball task. The first minute of the EEG sample was analyzed. Repetitive samples were also obtained from 10 healthy controls. The brain engagement index increased significantly during the pre-ictal (p ≈ 0.001) and the ictal (p ≈ 0.020) periods compared with the inter-ictal period. No difference was observed between the pre-ictal and ictal periods. Control subjects demonstrated intermediate Brain Engagement Index values, that is, higher than inter-ictal, yet lower than pre-ictal. Our preliminary results demonstrate the potential advantage of the use of a simple EEG system for improved prediction of migraine attacks. Further study is required to evaluate the efficacy of the Brain Engagement Index in monitoring the migraine cycle and the possible effects of interventions.


2012 ◽  
Vol 6 ◽  
pp. 26-36 ◽  
Author(s):  
Toshiro Fujimoto ◽  
Eiichi Okumura ◽  
Kouzou Takeuchi ◽  
Atsushi Kodabashi ◽  
Hiroaki Tanaka ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Varun D. C. Arrazola

Songs and poems from different traditions show a striking formal similarity: lines are flexible at the beginning and get more regular toward the end. This suggests that the free-beginning/strict-end pattern stems from a cognitive bias shared among humans. We propose that this is due to an increased sensitivity to deviants later in the line, resulting from a prediction-driven attention increase disrupted by line breaks. The study tests this hypothesis using an auditory oddball task where drum strokes are presented in sequences of eight, mimicking syllables in song or poem lines. We find that deviant strokes occurring later in the line are detected faster, mirroring the lower occurrence of deviant syllables toward the end of verse lines.


Sign in / Sign up

Export Citation Format

Share Document