scholarly journals Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification

2018 ◽  
Author(s):  
Carlos Daniel Cadena ◽  
Jorge L. Pérez-Emán ◽  
Andrés M. Cuervo ◽  
Laura N. Céspedes ◽  
Kevin L. Epperly ◽  
...  

AbstractAimEmploy phylogeographic analyses of a widespread species complex to examine the role of historical and evolutionary processes in the origin and maintenance of high species diversity in the Neotropical montane region.LocationNeotropical highlands.TaxonHenicorhinawood-wrens (Aves, Troglodytidae).MethodsWe collected mtDNA sequence data for 288 individuals thoroughly covering the range of theHenicorhina leucophryscomplex from Mexico to Bolivia. Sequences were employed to characterize population structure, infer phylogenetic relationships among populations and their divergence times, examine lineage accumulation through time, and identify presumptive species using coalescent methods. We also explored the origin of elevational and latitudinal replacements involved in spatial changes in species assemblages in the Andes.ResultsWe found remarkable genetic structure within the complex, which consists of numerous lineages reaching >12% sequence divergence; most divergent populations occur in areas separated by topographic barriers but several of them, typically not sister to each other, co-occur with elevational segregation on mountain slopes or replace each other with latitude along the Andes. Some close relatives occur in areas separated by thousands of kilometers, with more distant relatives occupying intervening areas. The complex likely originated in the Mexican highlands and expanded extensively in South America while diverging rapidly at a constant rate into many different lineages which have persisted for millions of years. Coalescent analyses consistently revealed that the complex may comprise more than 30 species; while we do not suggest these presumptive species should be recognized by taxonomists in the absence of additional data,H. leucophrysis a distant outlier among New World birds in terms of high lineage diversity within a single recognized species.Main ConclusionsOur study captured wood-wren lineages in the act of building up diversity via divergence and persistence in allopatry, achievement of secondary sympatry, and coexistence at the landscape scale mediated by ecological and evolutionary divergence. Although dispersal by wood-wrens is restricted at present and this likely accounts for strong population structure across topographic barriers, their ranges have been dynamic, managing to disperse over much of the montane Neotropics. Phases of expansion and contraction of ranges and localized extinctions of populations likely account for phylogeographic patterns which are precursors to the origin of new species and the accumulation of diversity in tropical mountains.

2011 ◽  
Vol 62 (1) ◽  
pp. 1 ◽  
Author(s):  
M. C. Sabando ◽  
I. Vila ◽  
R. Peñaloza ◽  
D. Véliz

Dispersal and many other factors affect population genetic structure. In central Chile, rivers are characterised by strong currents and transverse mountain chains, which impose physical barriers to the populations that inhabit them. The objective of the present study was to study the population genetic structure of two widespread species of aquatic insects, the caddisfly Smicridea annulicornis and the mayfly Andesiops torrens, in three isolated rivers, Choapa, Maipo and Maule. The analysis of population structure, using both mtDNA (cytochrome C oxidase subunit 1, COI) and nuclear markers (amplified fragment length polymorphism, AFLP), considered samples from within and among rivers. In S. annulicornis, we found differentiation within and among rivers, indicating a low dispersal among the study area. Populations of A. torrens shared haplotypes in all three rivers and no differences were found among rivers, indicating that this species probably has more dispersal potential than does S. annulicornis; however, significant differences were observed within rivers. Our results indicate that the transverse mountain chains are not a barrier for A. torrens, which can disperse among rivers. Within rivers, the population structure suggests that these species are probably adapted to avoid drift because of the torrential character of these Chilean rivers.


2017 ◽  
Author(s):  
Yeşerin Yıldırım ◽  
Marti J. Anderson ◽  
Selina Patel ◽  
Craig D. Millar ◽  
Paul B. Rainey

AbstractPleurobranchaea maculatais a rarely studied species of the Heterobranchia found throughout the south and western Pacific – and recently recorded in Argentina – whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history ofP. maculatapopulations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and theCOIandCytBregions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence from Argentinian sea slugs did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.


2015 ◽  
Vol 63 (4) ◽  
pp. 236
Author(s):  
Charlotte R. Hurry ◽  
Daniel J. Schmidt ◽  
Jane M. Hughes

Conservation plans can benefit from understanding patterns of genetic structure because many endangered species are spatially fragmented. In particular, headwater species in high elevations are expected to exhibit a high level of population structure, as dispersal through lowland streams may be limited. Euastacus urospinosus is an endangered freshwater crayfish that, until recently, was thought to have a distribution of just 200 km2. In the current study, we identified a total of 26 locations for this species across a 1225 km2 region spanning the Brisbane and Mary River catchments of south-east Queensland, Australia. We then used mitochondrial DNA sequence data to investigate the population structure and the phylogeographic divergence between four uplands. We found significant population differentiation for this species, which conforms to the headwater model of genetic structure. Further, we found that fragmentation between these uplands is most likely historical, as the first divergence between lineages dated back 2.1 million years. Overall, we found no reason to remove the conservation rating of ‘endangered’ for this species. Conservation plans should seek to preserve the genetic integrity of these uplands by considering them to be genetically distinct and isolated populations.


Author(s):  
Francisco J. Márquez ◽  
Antonio Caruz

AbstractThe genetic population structure relationships of Hyalomma (Euhyalomma) lusitanicum in Andalusia (the south of the Iberian Peninsula) were examined using mtDNA sequence data from 887 bp of cytochrome oxidase subunit I (COI) gene. The sequence for the COI region was determined for 84 individuals collected in several localities of Andalusia, and 10 for other localities (i.e., five from Toledo, central Iberian Peninsula, four from Sicily (Italy) and one from Canary Island). Seventeen haplotypes were detected, including 27 polymorphic sites. The number of amino acid substitutions per site from mean diversity calculations for the entire population was 0.017. AMOVA analysis revealed a low gene flow that characterises the genetic population structure of this species in South Iberian Peninsula, with a haplotype diversity (h) value of 0.815. No geographically induced differentiation was observed, and separate evolutionary units were not detected. Our results indicate low genetic diversity across the geographical range of H. lusitanicum tick in Andalusia. Our data do not show any genetic discontinuity between the tick populations studied, including specimens from Canary Island and Sicily (Italy).


2019 ◽  
Vol 112 (5) ◽  
pp. 2362-2368
Author(s):  
Yan Liu ◽  
Lei Chen ◽  
Xing-Zhi Duan ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
...  

Abstract Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 477-477
Author(s):  
Leah K Treffer ◽  
Edward S Rice ◽  
Anna M Fuller ◽  
Samuel Cutler ◽  
Jessica L Petersen

Abstract Domestic yak (Bos grunniens) are bovids native to the Asian Qinghai-Tibetan Plateau. Studies of Asian yak have revealed that introgression with domestic cattle has contributed to the evolution of the species. When imported to North America (NA), some hybridization with B. taurus did occur. The objective of this study was to use mitochondrial (mt) DNA sequence data to better understand the mtDNA origin of NA yak and their relationship to Asian yak and related species. The complete mtDNA sequence of 14 individuals (12 NA yak, 1 Tibetan yak, 1 Tibetan B. indicus) was generated and compared with sequences of similar species from GeneBank (B. indicus, B. grunniens (Chinese), B. taurus, B. gaurus, B. primigenius, B. frontalis, Bison bison, and Ovis aries). Individuals were aligned to the B. grunniens reference genome (ARS_UNL_BGru_maternal_1.0), which was also included in the analyses. The mtDNA genes were annotated using the ARS-UCD1.2 cattle sequence as a reference. Ten unique NA yak haplotypes were identified, which a haplotype network separated into two clusters. Variation among the NA haplotypes included 93 nonsynonymous single nucleotide polymorphisms. A maximum likelihood tree including all taxa was made using IQtree after the data were partitioned into twenty-two subgroups using PartitionFinder2. Notably, six NA yak haplotypes formed a clade with B. indicus; the other four haplotypes grouped with B. grunniens and fell as a sister clade to bison, gaur and gayal. These data demonstrate two mitochondrial origins of NA yak with genetic variation in protein coding genes. Although these data suggest yak introgression with B. indicus, it appears to date prior to importation into NA. In addition to contributing to our understanding of the species history, these results suggest the two major mtDNA haplotypes in NA yak may functionally differ. Characterization of the impact of these differences on cellular function is currently underway.


2012 ◽  
Vol 60 (1) ◽  
pp. 32 ◽  
Author(s):  
Laurence J. Clarke ◽  
Duncan I. Jardine ◽  
Margaret Byrne ◽  
Kelly Shepherd ◽  
Andrew J. Lowe

Atriplex sp. Yeelirrie Station (L. Trotter & A. Douglas LCH 25025) is a highly restricted, potentially new species of saltbush, known from only two sites ~30 km apart in central Western Australia. Knowledge of genetic structure within the species is required to inform conservation strategies as both populations occur within a palaeovalley that contains significant near-surface uranium mineralisation. We investigate the structure of genetic variation within populations and subpopulations of this taxon using nuclear microsatellites. Internal transcribed spacer sequence data places this new taxon within a clade of polyploid Atriplex species, and the maximum number of alleles per locus suggests it is hexaploid. The two populations possessed similar levels of genetic diversity, but exhibited a surprising level of genetic differentiation given their proximity. Significant isolation by distance over scales of less than 5 km suggests dispersal is highly restricted. In addition, the proportion of variation between the populations (12%) is similar to that among A. nummularia populations sampled at a continent-wide scale (several thousand kilometres), and only marginally less than that between distinct A. nummularia subspecies. Additional work is required to further clarify the exact taxonomic status of the two populations. We propose management recommendations for this potentially new species in light of its highly structured genetic variation.


2019 ◽  
Author(s):  
Daria Koscinski ◽  
Paul Handford ◽  
Pablo L. Tubaro ◽  
Peiwen Li ◽  
Stephen C. Lougheed

ABSTRACTThe tropical and subtropical Andes have among the highest levels of biodiversity in the world. Understanding the forces that underlie speciation and diversification in the Andes is a major focus of research. Here we tested two hypotheses of species origins in the Andes: 1. Vicariance mediated by orogenesis or shifting habitat distribution. 2. Parapatric diversification along elevational environmental gradients. We also sought insights on the factors that impacted the phylogeography of co-distributed taxa, and the influences of divergent species ecology on population genetic structure. We used phylogeographic and coalescent analyses of nuclear and mitochondrial DNA sequence data to compare genetic diversity and evolutionary history of two frog species: Pleurodema borellii (Family: Leiuperidae, 130 individuals; 20 sites), and Hypsiboas riojanus (Family: Hyllidae, 258 individuals; 23 sites) across their shared range in northwestern Argentina. The two showed concordant phylogeographic structuring, and our analyses support the vicariance model over the elevational gradient model. However, Pleurodema borellii exhibited markedly deeper temporal divergence (≥4 Ma) than H. riojanus (1-2 Ma). The three main mtDNA lineages of P. borellii were nearly allopatric and diverged between 4-10 Ma. At similar spatial scales, differentiation was less in the putatively more habitat-specialized H. riojanus than in the more generalist P. borellii. Similar allopatric distributions of major lineages for both species implies common causes of historical range fragmentation and vicariance. However, different divergence times among clades presumably reflect different demographic histories, permeability of different historical barriers at different times, and/or difference in life history attributes and sensitivities to historical environmental change. Our research enriches our understanding of the phylogeography of the Andes in northwestern Argentina.


Genetics ◽  
1972 ◽  
Vol 72 (1) ◽  
pp. 183-186
Author(s):  
D Childress

ABSTRACT Theoretical calculations and population cage data are presented to illustrate the use of compound chromosomes to change the genetic structure of insect populations.


2018 ◽  
Author(s):  
Sandra Oliveira ◽  
Alexander Hübner ◽  
Anne-Maria Fehn ◽  
Teresa Aço ◽  
Fernanda Lages ◽  
...  

AbstractSouthwestern Angola is a region characterized by contact between indigenous foragers and incoming food-producers, involving genetic and cultural exchanges between peoples speaking Kx’a, Khoe-Kwadi and Bantu languages. Although present-day Bantu-speakers share a patrilocal residence pattern and matrilineal principle of clan and group membership, a highly stratified social setting divides dominant pastoralists from marginalized groups that subsist on alternative strategies and have previously been though to have pre-Bantu origins. Here, we compare new high-resolution sequence data from 2.3 Mb of the non-recombining Y chromosome (NRY) from 170 individuals with previously reported mitochondrial genomes (mtDNA), to investigate the population history of seven representative southwestern Angolan groups (Himba, Kuvale, Kwisi, Kwepe, Twa, Tjimba, !Xun) and to study the causes and consequences of sex-biased processes in their genetic variation. We found no clear link between the formerly Kwadi-speaking Kwepe and pre-Bantu eastern African migrants, and no pre-Bantu NRY lineages among Bantu-speaking groups, except for small amounts of “Khoisan” introgression. We therefore propose that irrespective of their subsistence strategies, all Bantu-speaking groups of the area share a male Bantu origin. Additionally, we show that in Bantu-speaking groups, the levels of among-group and between-group variation are higher for mtDNA than for NRY. These results, together with our previous demonstration that the matriclanic systems of southwestern Angolan Bantu groups are genealogically consistent, suggest that matrilineality strongly enhances both female population sizes and interpopulation mtDNA variation.


Sign in / Sign up

Export Citation Format

Share Document