scholarly journals CHANGING POPULATION STRUCTURE THROUGH THE USE OF COMPOUND CHROMOSOMES

Genetics ◽  
1972 ◽  
Vol 72 (1) ◽  
pp. 183-186
Author(s):  
D Childress

ABSTRACT Theoretical calculations and population cage data are presented to illustrate the use of compound chromosomes to change the genetic structure of insect populations.

2019 ◽  
Vol 112 (5) ◽  
pp. 2362-2368
Author(s):  
Yan Liu ◽  
Lei Chen ◽  
Xing-Zhi Duan ◽  
Dian-Shu Zhao ◽  
Jing-Tao Sun ◽  
...  

Abstract Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240743
Author(s):  
Maurice Marcel Sandeu ◽  
Charles Mulamba ◽  
Gareth D. Weedall ◽  
Charles S. Wondji

Background Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. Methods Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. Results Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. Conclusion The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.


Author(s):  
Leonard Nunney

Population structure is a ubiquitous feature of natural populations that has an important influence on evolutionary change. In the real world, populations are not homogenous units; instead, they develop an internal structure, created by the physical properties of the environment and the biological characteristics of the species (such as dispersal ability). However, our basic ecological and population genetic models generally ignore population structure and focus on randomly mating (panmictic) populations. Such structure can profoundly change the evolution of a population. In fact, the myriad of influences that population structure exerts can only be hinted at in a single chapter. Since an exhaustive review is not possible, I will focus on presenting the conceptual issues linking mathematical models of population structure to empirical studies. To do this, it is useful to recognize two different kinds of population structure that both reflect and influence evolutionary change. The first is genetic structure. This is defined as the nonrandom distribution of genotypes in space and time. Thus, genetic structure reflects the genetic differences that develop among the different components of one or more populations. The second is what I will call proximity structure, defined by the size and composition of the group of neighbors that influence an individual’s fitness. Fitness is commonly influenced by local intraspecific interactions. Perhaps the most obvious example is competition. When individuals compete for some resource, they don’t usually compete equally with every other member of the population; in general, they compete only with a few of the most proximate individuals. These two forms of population structure, genetic structure and proximity structure, provide a foundation for understanding why we have shifted away from viewing populations as homogenous units. For good reason, this is a theme that is explored in many of the other chapters in this book. Genetic structure can develop within a population over a single generation, generally either as a result of local family associations or as a result of spatial variation in selection. For example, limited seed dispersal results in genetic correlations among neighbors even in the face of long-distance pollen movement, due to the clustering of maternal half sibs.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 681 ◽  
Author(s):  
Huiquan Zheng ◽  
Dehuo Hu ◽  
Ruping Wei ◽  
Shu Yan ◽  
Runhui Wang

Knowledge on population diversity and structure is of fundamental importance for conifer breeding programs. In this study, we concentrated on the development and application of high-density single nucleotide polymorphism (SNP) markers through a high-throughput sequencing technique termed as specific-locus amplified fragment sequencing (SLAF-seq) for the economically important conifer tree species, Chinese fir (Cunninghamia lanceolata). Based on the SLAF-seq, we successfully established a high-density SNP panel consisting of 108,753 genomic SNPs from Chinese fir. This SNP panel facilitated us in gaining insight into the genetic base of the Chinese fir advance breeding population with 221 genotypes for its genetic variation, relationship and diversity, and population structure status. Overall, the present population appears to have considerable genetic variability. Most (94.15%) of the variability was attributed to the genetic differentiation of genotypes, very limited (5.85%) variation occurred on the population (sub-origin set) level. Correspondingly, low FST (0.0285–0.0990) values were seen for the sub-origin sets. When viewing the genetic structure of the population regardless of its sub-origin set feature, the present SNP data opened a new population picture where the advanced Chinese fir breeding population could be divided into four genetic sets, as evidenced by phylogenetic tree and population structure analysis results, albeit some difference in membership of the corresponding set (cluster vs. group). It also suggested that all the genetic sets were admixed clades revealing a complex relationship of the genotypes of this population. With a step wise pruning procedure, we captured a core collection (core 0.650) harboring 143 genotypes that maintains all the allele, diversity, and specific genetic structure of the whole population. This generalist core is valuable for the Chinese fir advanced breeding program and further genetic/genomic studies.


2020 ◽  
Vol 130 (1) ◽  
pp. 49-60
Author(s):  
Kirsten M Donald ◽  
Graham A McCulloch ◽  
Ludovic Dutoit ◽  
Hamish G Spencer

Abstract We examined phylogeographic structure in the direct-developing New Zealand endemic intertidal mud whelk, Cominella glandiformis. Two hundred and ninety-six whelks from 12 sites were collected from sheltered shores around New Zealand’s four largest islands (North Island, South Island, Stewart Island and Chatham Island), encompassing the geographical range of this species. Despite being direct developers, gene flow among C. glandiformis populations may occur over short distances by adult floating, and over larger distances by rafting of egg masses. Primers were developed to amplify variable microsatellite regions at six loci. All loci were variable, with 8–34 alleles/loci. Observed and expected heterozygosities were high across all alleles, with minimal evidence of null alleles. The average number of alleles varied from 3.5 (Chatham Island) to 7.5 (Waitemata Harbour). Strong genetic structure was evident, with distinct ‘eastern’ and ‘western’ groups. Each group extended over a large geographic area, including regions of unsuitable habitat, but were linked by oceanic currents. We suggest that the intraspecific geographic genetic structure in C. glandiformis has arisen due a combination of ocean currents (promoting gene flow between geographically distant regions) and upwelling areas (limiting gene flow between certain regions).


2014 ◽  
Vol 10 (8) ◽  
pp. 20140255 ◽  
Author(s):  
Jennifer A. H. Koop ◽  
Karen E. DeMatteo ◽  
Patricia G. Parker ◽  
Noah K. Whiteman

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk ( Buteo galapagoensis ) and a parasitic feather louse species ( Degeeriella regalis ) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se , suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.


2014 ◽  
Vol 51 (4) ◽  
pp. 309-317 ◽  
Author(s):  
O. Zhigileva ◽  
V. Ozhireľev ◽  
T. Stepanova ◽  
T. Moiseenko

AbstractGenetic variability of West Siberian populations of Opisthorchis felineus and two species of cyprinid fish, its second intermediate hosts, was studied by isozyme analysis. Low levels of allozyme variation and genetic differentiation in O. felineus from the Ob-Irtysh focus of opisthorchiasis were detected. The proportion of polymorphic loci was 21.1 %, the average observed heterozygosity (Hobs) was 0.008, and expected heterozygosity (Hexp) was 0.052. For most loci in O. felineus deficit of heterozygotes (FIS = 0.7424) was observed. A comparison of population genetic structure of fish and parasites showed they were not congruent. Estimates of genetic differentiation of the parasite were smaller than for the fish — its intermediate host. Migration and population structure of the second intermediate hosts do not play an important role in formation of the population-genetic structure of O. felineus in the Ob-Irtysh focus of opisthorchiasis.


2002 ◽  
Vol 68 (6) ◽  
pp. 2849-2857 ◽  
Author(s):  
L. Mereghetti ◽  
P. Lanotte ◽  
V. Savoye-Marczuk ◽  
N. Marquet-Van Der Mee ◽  
A. Audurier ◽  
...  

ABSTRACT To improve our understanding of the genetic links between strains originating from food and strains responsible for human diseases, we studied the genetic diversity and population structure of 130 epidemiologically unrelated Listeria monocytogenes strains. Strains were isolated from different sources and ecosystems in which the bacterium is commonly found. We used rRNA gene restriction fragment length polymorphism analysis with two endonucleases and random multiprimer DNA analysis with seven oligonucleotide primers to study multiple genetic features of each strain. We used three clustering methods to identify genetic links between individual strains and to determine the precise genetic structure of the population. The combined results confirmed that L. monocytogenes strains can be divided into two major phylogenetic divisions. The method used allowed us to demonstrate that the genetic structure and diversity of the two phylogenetic divisions differ. Division I is the most homogeneous and can easily be divided into subgroups with dissimilarity distances of less than 0.30. Each of these subgroups mainly, or exclusively, contains a single serotype (1/2b, 4b, 3b, or 4a). The serotype 4a lineage appears to form a branch that is highly divergent from the phylogenetic group containing serotypes 1/2b, 4b, and 3b. Division II contains strains of serotypes 1/2a, 1/2c, and 3a. It exhibits more genetic diversity with no peculiar clustering. The fact that division II is more heterogeneous than division I suggests that division II evolved from a common ancestor earlier than division I. A significant association was found between division I and human strains, suggesting that strains from division I are better adapted to human hosts.


Sign in / Sign up

Export Citation Format

Share Document