scholarly journals Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

2018 ◽  
Author(s):  
Sydney M. Shaffer ◽  
Benjamin L. Emert ◽  
Raul Reyes-Hueros ◽  
Christopher Coté ◽  
Guillaume Harmange ◽  
...  

AbstractNon-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. Yet it remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure. Here, we report a method combining Luria and Delbrück’s fluctuation analysis with population-based RNA sequencing (MemorySeq) for identifying genes transcriptome-wide whose fluctuations persist for several cell divisions. MemorySeq revealed multiple gene modules that are expressed together in rare cells within otherwise homogeneous clonal populations. Further, we found that these rare cell subpopulations are associated with biologically distinct behaviors, such as the ability to proliferate in the face of anti-cancer therapeutics, in different cancer cell lines. The identification of non-genetic, multigenerational fluctuations has the potential to reveal new forms of biological memory at the level of single cells and suggests that non-genetic heritability of cellular state may be a quantitative property.

Blood ◽  
2017 ◽  
Vol 129 (17) ◽  
pp. 2384-2394 ◽  
Author(s):  
Rebecca Warfvinge ◽  
Linda Geironson ◽  
Mikael N. E. Sommarin ◽  
Stefan Lang ◽  
Christine Karlsson ◽  
...  

Key Points Single-cell gene expression analysis reveals CML stem cell heterogeneity and changes imposed by TKI therapy. A subpopulation with primitive, quiescent signature and increased survival to therapy can be high-purity captured as CD45RA−cKIT−CD26+.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 183-183
Author(s):  
Kai Wu ◽  
Qianyi Ma ◽  
Darren King ◽  
Jun Li ◽  
Sami Malek

Introduction: Despite achievement of complete remission (CR) following chemotherapy, Acute Myelogenous Leukemia (AML) relapses in the majority of adult patients. While relapsed AML is almost always clonally related to the disease at diagnosis, the actual molecular and cellular contributors to chemotherapy resistance and to AML relapse remain incompletely understood. Some molecular determinants of relapse have been identified in genomic, epigenetic and proteomic aberrations, while cellular relapse reservoirs have been identified in leukemia stem cells as well as in more mature leukemic cell compartments. Here, we set out to determine the cellular composition, gene mutation status and gene expression of paired AML specimens procured at diagnosis and at relapse aiming at a better understanding of the AML relapse process. Methods: We employed the drop-seq 3' single cell RNA sequencing (scRNA-seq) method (Macosko 2015) with minor modifications to analyze the mRNA expression in single cells derived from 12 paired AML specimens procured at diagnosis and at relapse from prior CR. We obtained scRNA-seq data on 1000-2000 single cells per sample detecting approximately 2000-3000 unique molecular identifiers (UMIs) and 800-1500 genes per cell. Using WES or panel-based sequencing we determined mutations in known driver genes. Subsequently, we optimized novel methods for detection and mapping of mutated driver genes to individual cells using mutation specific PCR conditions and novel bioinformatics approaches. We annotated scRNA-seq expression profiles of the diagnosis and relapsed AML specimens individually using publicly available data for cell type-specific RNA markers derived from sorted normal cell populations and further compared the scRNA-seq data to scRNA-seq data of 5 pooled normal human bone marrows generated for this study. Results: Through analyses of scRNA-seq data of paired diagnosis and relapse AML specimens via principle components analyses (PCA) or t-distributed stochastic neighbor embedding (t-SNE) we detected varying degrees of separation of cell clusters in all cases analyzed indicative of substantial changes in single cell gene expression between AML diagnosis and relapse. A few of these observed cluster shifts were paralleled by gain or loss of mutated genes (e.g. FLT3-ITD) at relapse while most others lacked obvious clonal genomic markers. Through subsequent comparison of the expression similarities of single AML cells to sorted normal human bone marrow cells we detected two distinct AML relapse patterns: i) a pattern of relapse suggesting simple leukemia regrowth as evidenced by similar proportions of leukemia cells mapping onto discrete normal bone marrow cells (e.g. monocyte-like or GMPs or CMPs), and, ii) a pattern of relapse whereby the gene expression of relapsed cells (but not diagnosis cells) had similarity to normal hematopoietic cells that are conventionally placed more apical in the classical hematopoiesis differentiation cascade (HSCs, MPPs, CMPs; a phenotypic shift to immaturity). In addition, no leukemia sample mapped to just one classically defined bone marrow cell type but instead to multiple cell types, suggesting that most AML leukemia cells harbor aberrant hybrid cell gene expression patterns. Finally, we detected quantitative shifts in T cells and NK cells in some samples at relapse, which will be analyzed in greater detail. Conclusions: The comparative analysis of scRNA-seq data of paired AML specimens procured at diagnosis and relapse, identifies frequent and previously unrecognized changes in gene expression in leukemia cells at relapse. Through a comparison of gene mutation and gene expression at single cell resolution we identify two distinct AML relapse patterns in adult AML. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Author(s):  
Jonathan Alles ◽  
Nikos Karaiskos ◽  
Samantha D. Praktiknjo ◽  
Stefanie Grosswendt ◽  
Philipp Wahle ◽  
...  

ABSTRACTBackgroundRecent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells, in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not compromised by stress or ageing. Another challenge are rare cells that need to be collected over several days, or samples prepared at different times or locations.ResultsHere, we used chemical fixation to overcome these problems. Methanol fixation allowed us to stabilize and preserve dissociated cells for weeks. By using mixtures of fixed human and mouse cells, we showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary single cells from dissociated complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells sorted by FACS, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide ‘dropbead’, an R package for exploratory data analysis, visualization and filtering of Drop-seq data.ConclusionsWe expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single cell resolution.


2019 ◽  
Vol 28 (8) ◽  
pp. 1381-1391
Author(s):  
Jaakko Laaksonen ◽  
Ilkka Seppälä ◽  
Emma Raitoharju ◽  
Nina Mononen ◽  
Leo-Pekka Lyytikäinen ◽  
...  

2017 ◽  
Vol 27 (11) ◽  
pp. 1783-1794 ◽  
Author(s):  
Jiaxu Wang ◽  
Piroon Jenjaroenpun ◽  
Akshay Bhinge ◽  
Vladimir Espinosa Angarica ◽  
Antonio Del Sol ◽  
...  

2021 ◽  
Author(s):  
Joseph Boen ◽  
Joel P. Wagner ◽  
Noemi Di Nanni

Copy number variations (CNVs) are genomic events where the number of copies of a particular gene varies from cell to cell. Cancer cells are associated with somatic CNV changes resulting in gene amplifications and gene deletions. However, short of single-cell whole-genome sequencing, it is difficult to detect and quantify CNV events in single cells. In contrast, the rapid development of single-cell RNA sequencing (scRNA-seq) technologies has enabled easy acquisition of single-cell gene expression data. In this work, we employ three methods to infer CNV events from scRNA-seq data and provide a statistical comparison of the methods' results. In addition, we combine the analysis of scRNA-seq and inferred CNV data to visualize and determine subpopulations and heterogeneity in tumor cell populations.


Science ◽  
2015 ◽  
Vol 347 (6222) ◽  
pp. 1258367 ◽  
Author(s):  
H. Christina Fan ◽  
Glenn K. Fu ◽  
Stephen P. A. Fodor

We present a technically simple approach for gene expression cytometry combining next-generation sequencing with stochastic barcoding of single cells. A combinatorial library of beads bearing cell- and molecular-barcoding capture probes is used to uniquely label transcripts and reconstruct the digital gene expression profile of thousands of individual cells in a single experiment without the need for robotics or automation. We applied the technology to dissect the human hematopoietic system and to characterize heterogeneous response to in vitro stimulation. High sensitivity is demonstrated by detection of low-abundance transcripts and rare cells. Under current implementation, the technique can analyze a few thousand cells simultaneously and can readily scale to 10,000s or 100,000s of cells.


2020 ◽  
Author(s):  
Yipeng Gao ◽  
Lei Li ◽  
Christopher I. Amos ◽  
Wei Li

AbstractAlternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes including cell proliferation and differentiation, but the APA heterogeneity among single cells remains largely unknown. Single-cell RNA sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the transcription level. Yet, most scRNA-seq data have not been analyzed in an “APA-aware” manner. Here, we introduce scDaPars, a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-gene resolution using standard scRNA-seq data. Validations in both real and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed cell-type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.


2017 ◽  
Author(s):  
Tao Peng ◽  
Qing Nie

AbstractMeasurement of gene expression levels for multiple genes in single cells provides a powerful approach to study heterogeneity of cell populations and cellular plasticity. While the expression levels of multiple genes in each cell are available in such data, the potential connections among the cells (e.g. the cellular state transition relationship) are not directly evident from the measurement. Classifying the cellular states, identifying their transitions among those states, and extracting the pseudotime ordering of cells are challenging due to the noise in the data and the high-dimensionality in the number of genes in the data. In this paper we adapt the classical self-organizing-map (SOM) approach for single-cell gene expression data (SOMSC), such as those based on single cell qPCR and single cell RNA-seq. In SOMSC, a cellular state map (CSM) is derived and employed to identify cellular states inherited in the population of the measured single cells. Cells located in the same basin of the CSM are considered as in one cellular state while barriers among the basins in CSM provide information on transitions among the cellular states. A cellular state transitions path (e.g. differentiation) and a temporal ordering of the measured single cells are consequently obtained. In addition, SOMSC could estimate the cellular state replication probability and transition probabilities. Applied to a set of synthetic data, one single-cell qPCR data set on mouse early embryonic development and two single-cell RNA-seq data sets, SOMSC shows effectiveness in capturing cellular states and their transitions presented in the high-dimensional single-cell data. This approach will have broader applications to analyzing cellular fate specification and cell lineages using single cell gene expression data


2021 ◽  
Author(s):  
Georgeos Hardo ◽  
Somenath Bakshi

Abstract Stochastic gene expression causes phenotypic heterogeneity in a population of genetically identical bacterial cells. Such non-genetic heterogeneity can have important consequences for the population fitness, and therefore cells implement regulation strategies to either suppress or exploit such heterogeneity to adapt to their circumstances. By employing time-lapse microscopy of single cells, the fluctuation dynamics of gene expression may be analysed, and their regulatory mechanisms thus deciphered. However, a careful consideration of the experimental design and data-analysis is needed to produce useful data for deriving meaningful insights from them. In the present paper, the individual steps and challenges involved in a time-lapse experiment are discussed, and a rigorous framework for designing, performing, and extracting single-cell gene expression dynamics data from such experiments is outlined.


Sign in / Sign up

Export Citation Format

Share Document