scholarly journals GenoDup Pipeline: a tool to detect genome duplication using the dS-based method

2018 ◽  
Author(s):  
Yafei Mao ◽  
Noriyuki Satoh

ABSTRACTUnderstanding whole genome duplication (WGD), or polyploidy, is fundamental to investigating the origin and diversification of organisms in evolutionary biology. The wealth of genomic data generated by next generation sequencing (NGS) has resulted in an urgent need for robust and accurate tools to detect WGD. Here, we present a useful and user-friendly pipeline called GenoDup for inferring WGD using the dS-based method. We have successfully applied GenoDup to identify WGD in empirical data from both plants and animals. The GenoDup Pipeline provides a reliable and useful tool to infer WGD from NGS data.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6303 ◽  
Author(s):  
Yafei Mao

Understanding whole genome duplication (WGD), or polyploidy, is fundamental to investigating the origin and diversification of organisms in evolutionary biology. The wealth of genomic data generated by next generation sequencing (NGS) has resulted in an urgent need for handy and accurate tools to detect WGD. Here, I present a useful and user-friendly pipeline called GenoDup for inferring WGD using the dS-based method. I have successfully applied GenoDup to identify WGD in empirical data from both plants and animals. The GenoDup Pipeline provides a reliable and useful tool to infer WGD from NGS data.


2019 ◽  
Vol 24 (2) ◽  
Author(s):  
Anja Berger ◽  
Alexandra Dangel ◽  
Tilmann Schober ◽  
Birgit Schmidbauer ◽  
Regina Konrad ◽  
...  

In September 2018, a child who had returned from Somalia to Germany presented with cutaneous diphtheria by toxigenic Corynebacterium diphtheriae biovar mitis. The child’s sibling had superinfected insect bites harbouring also toxigenic C. diphtheriae. Next generation sequencing (NGS) revealed the same strain in both patients suggesting very recent human-to-human transmission. Epidemiological and NGS data suggest that the two cutaneous diphtheria cases constitute the first outbreak by toxigenic C. diphtheriae in Germany since the 1980s.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andreas Papoutsis ◽  
Thomas Borody ◽  
Siba Dolai ◽  
Jordan Daniels ◽  
Skylar Steinberg ◽  
...  

Abstract Background SARS-CoV-2 has been detected not only in respiratory secretions, but also in stool collections. Here were sought to identify SARS-CoV-2 by enrichment next-generation sequencing (NGS) from fecal samples, and to utilize whole genome analysis to characterize SARS-CoV-2 mutational variations in COVID-19 patients. Results Study participants underwent testing for SARS-CoV-2 from fecal samples by whole genome enrichment NGS (n = 14), and RT-PCR nasopharyngeal swab analysis (n = 12). The concordance of SARS-CoV-2 detection by enrichment NGS from stools with RT-PCR nasopharyngeal analysis was 100%. Unique variants were identified in four patients, with a total of 33 different mutations among those in which SARS-CoV-2 was detected by whole genome enrichment NGS. Conclusion These results highlight the potential viability of SARS-CoV-2 in feces, its ongoing mutational accumulation, and its possible role in fecal–oral transmission. This study also elucidates the advantages of SARS-CoV-2 enrichment NGS, which may be a key methodology to document complete viral eradication. Trial registration ClinicalTrials.gov, NCT04359836, Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359836?term=NCT04359836&draw=2&rank=1).


Molecules ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 399 ◽  
Author(s):  
Sima Taheri ◽  
Thohirah Lee Abdullah ◽  
Mohd Yusop ◽  
Mohamed Hanafi ◽  
Mahbod Sahebi ◽  
...  

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 50 ◽  
Author(s):  
Michael T. Wolfinger ◽  
Jörg Fallmann ◽  
Florian Eggenhofer ◽  
Fabian Amman

Recent achievements in next-generation sequencing (NGS) technologies lead to a high demand for reuseable software components to easily compile customized analysis workflows for big genomics data. We present ViennaNGS, an integrated collection of Perl modules focused on building efficient pipelines for NGS data processing. It comes with functionality for extracting and converting features from common NGS file formats, computation and evaluation of read mapping statistics, as well as normalization of RNA abundance. Moreover, ViennaNGS provides software components for identification and characterization of splice junctions from RNA-seq data, parsing and condensing sequence motif data, automated construction of Assembly and Track Hubs for the UCSC genome browser, as well as wrapper routines for a set of commonly used NGS command line tools.


Sign in / Sign up

Export Citation Format

Share Document