scholarly journals Hydrodynamics of linear acceleration in bluegill sunfish Lepomis macrochirus

2018 ◽  
Author(s):  
Tyler N. Wise ◽  
Margot A. B. Schwalbe ◽  
Eric D. Tytell

SUMMARY STATEMENTBluegill sunfish accelerate primarily by increasing the total amount of force produced in each tail beat but not by substantially redirecting forces.ABSTRACTIn their natural habitat, fish rarely swim steadily. Instead they frequently accelerate and decelerate. Relatively little is known about how fish produce extra force for acceleration in routine swimming behavior. In this study, we examined the flow around bluegill sunfish Lepomis macrochirus during steady swimming and during forward acceleration, starting at a range of initial swimming speeds. We found that bluegill produce vortices with higher circulation during acceleration, indicating a higher force per tail beat, but do not substantially redirect the force. We quantified the flow patterns using high speed video and particle image velocimetry and measured acceleration with small inertial measurement units attached to each fish. Even in steady tail beats, the fish accelerates slightly during each tail beat, and the magnitude of the acceleration varies. In steady tail beats, however, a high acceleration is followed by a lower acceleration or a deceleration, so that the swimming speed is maintained; in unsteady tail beats, the fish maintains the acceleration over several tailbeats, so that the swimming speed increases. We can thus compare the wake and kinematics during single steady and unsteady tailbeats that have the same peak acceleration. During unsteady tailbeats when the fish accelerates forward for several tailbeats, the wake vortex forces are much higher than those at the same acceleration during single tailbeats in steady swimming. The fish also undulates its body at higher amplitude and frequency during unsteady tailbeats. These kinematic changes likely increase the fluid dynamic added mass of the body, increasing the forces required to sustain acceleration over several tailbeats. The high amplitude and high frequency movements are also likely required to generate the higher forces needed for acceleration. Thus, it appears that bluegill sunfish face a tradeoff during acceleration: the body movements required for acceleration also make it harder to accelerate.

1997 ◽  
Vol 200 (13) ◽  
pp. 1863-1871 ◽  
Author(s):  
K D'Août ◽  
P Aerts

The kinematics of steady swimming at a wide range of velocities was analysed using high-speed video recordings (500 frames s-1) of eight individuals of Ambystoma mexicanum swimming through a tunnel containing stationary water. Animals in the observed size range (0.135­0.238 m total body length) prefer to swim at similar absolute speeds, irrespective of their body size. The swimming mechanism is of the anguilliform type. The measured kinematic variables ­ the speed, length, frequency and amplitude (along the entire body) of the propulsive wave ­ are more similar to those of anguilliform swimming fish than to those of tadpoles, in spite of common morphological features with the latter, such as limbs, external gills and a tapering tail. The swimming speed for a given animal size correlates linearly with the tailbeat frequency (r2=0.71), whereas the wavelength and tail-tip amplitude do not correlate with this variable. The shape of the amplitude profile along the body, however, is very variable between the different swimming bouts, even at similar speeds. It is suggested that, for a given frequency, the amplitude profile along the body is adjusted in a variable way to yield the resulting swimming speed rather than maintaining a fixed-amplitude profile. The swimming efficiency was estimated by calculating two kinematic variables (the stride length and the propeller efficiency) and by applying two hydrodynamic theories, the elongated-body theory and an extension of this theory accounting for the slope at the tail tip. The latter theory was found to be the most appropriate for the axolotl's swimming mode and yields a hydromechanical efficiency of 0.75±0.04 (mean ± s.d.), indicating that Ambystoma mexicanum swims less efficiently than do anuran tadpoles and most fishes. This can be understood given its natural habitat in vegetation at the bottom of lakes, which would favour manoeuvrability and fast escape.


1986 ◽  
Vol 122 (1) ◽  
pp. 1-12 ◽  
Author(s):  
KARIN VON SECKENDORFF HOFF ◽  
RICHARD JOEL WASSERSUG

The kinematics of swimming in larval Xenopus laevis has been studied using computer-assisted analysis of high-speed (200 frames s−1) ciné records. The major findings are as follows. 1. At speeds below 6 body lengths (L) per second, tail beat frequency is approximately 10 Hz and, unlike for most aquatic vertebrates, is not correlated with specific swimming speed. At higher speeds, tail beat frequency and speed are positively correlated. 2. Xenopus tadpoles show an increase in the maximum amplitude of the tail beat with increasing velocity up to approximately 6Ls−1. Above that speed amplitude approaches an asymptote at 20 % of body length. 3. Anterior yaw is absent at velocities below 6Ls−1, unlike for other anuran larvae, but is present at higher speeds. 4. At speeds below 6Ls−1 there is a positive linear relationship between length of the propulsive wave (λ) and specific swimming speed. At higher speeds wavelength is constant at approximately 0.8L. 5. There is a shift in the modulation of wavelength and tail beat frequency with swimming speed around 5.6Ls−1, suggesting two different swimming modes. The slower mode is used during open water cruising and suspension feeding. The faster, sprinting mode may be used to avoid predators. 6. Froude efficiencies are similar to those reported for fishes and other anuran larvae. 7. Unlike Rana and Bufo larvae, the axial muscle mass of Xenopus increases dramatically with size from less than 10% of total mass for the smallest animals to more than 45% of total mass for the largest animals. This increase is consistent with maintaining high locomotor performance throughout development.


2015 ◽  
Vol 93 (3) ◽  
pp. 213-223 ◽  
Author(s):  
J.L. Lim ◽  
T.M. Winegard

Anguilliform mode swimmers pass waves of lateral bending down their elongate bodies to propel forward. Hagfishes (Myxinidae) are classified as anguilliform swimmers, but their unique habits and reduced morphology—including a flexible body lacking a vertebral column—have the potential to translate into unique swimming behaviour within this broad classification. Their roles as active scavengers and hunters can require considerable bouts of swimming, yet quantitative data on hagfish locomotion are limited. Here, we aim to provide a more complete mechanistic understanding of hagfish swimming by quantifying whole-body kinematics of steady swimming in Pacific hagfish (Eptatretus stoutii (Lockington, 1878)) and Atlantic hagfish (Myxine glutinosa L., 1758), species from the two main lineages of Myxinidae. We analyzed high-speed video of hagfishes swimming at voluntary swim speeds and found that both species swim using high-amplitude undulatory waves. Swim speed is generally frequency-modulated, but patterns in wave speed, wavelength, and amplitude along the body and across swim speeds are variable, implying versatile mechanisms for the control of swim speed in these highly flexible fishes. We propose mechanistic explanations for this kinematic variability and compare hagfish with other elongate swimmers, demonstrating that the hagfish’s rich locomotory repertoire adds variety to the already diverse set of locomotory kinematics found in anguilliform swimmers.


2002 ◽  
Vol 205 (18) ◽  
pp. 2875-2884 ◽  
Author(s):  
James C. Liao

SUMMARYThe Atlantic needlefish (Strongylura marina) is a unique anguilliform swimmer in that it possesses prominent fins, lives in coastal surface-waters, and can propel itself across the surface of the water to escape predators. In a laboratory flow tank, steadily swimming needlefish perform a speed-dependent suite of behaviors while maintaining at least a half wavelength of undulation on the body at all times. To investigate the effects of discrete fins on anguilliform swimming, I used high-speed video to record body and fin kinematics at swimming speeds ranging from 0.25 to 2.0 Ls-1 (where L is the total body length). Analysis of axial kinematics indicates that needlefish are less efficient anguilliform swimmers than eels, indicated by their lower slip values. Body amplitudes increase with swimming speed, but unlike most fishes, tail-beat amplitude increases linearly and does not plateau at maximal swimming speeds. At 2.0 Ls-1, the propulsive wave shortens and decelerates as it travels posteriorly, owing to the prominence of the median fins in the caudal region of the body. Analyses of fin kinematics show that at 1.0 Ls-1 the dorsal and anal fins are slightly less than 180° out of phase with the body and approximately 225° out of phase with the caudal fin. Needlefish exhibit two gait transitions using their pectoral fins. At 0.25 L s-1, the pectoral fins oscillate but do not produce thrust, at 1.0 L s-1 they are held abducted from the body,forming a positive dihedral that may reduce rolling moments, and above 2.0 L s-1 they remain completely adducted.


2001 ◽  
Vol 204 (17) ◽  
pp. 2943-2958 ◽  
Author(s):  
Eliot G. Drucker ◽  
George V. Lauder

SUMMARYA key evolutionary transformation of the locomotor system of ray-finned fishes is the morphological elaboration of the dorsal fin. Within Teleostei, the dorsal fin primitively is a single midline structure supported by soft, flexible fin rays. In its derived condition, the fin is made up of two anatomically distinct portions: an anterior section supported by spines, and a posterior section that is soft-rayed. We have a very limited understanding of the functional significance of this evolutionary variation in dorsal fin design. To initiate empirical hydrodynamic study of dorsal fin function in teleost fishes, we analyzed the wake created by the soft dorsal fin of bluegill sunfish (Lepomis macrochirus) during both steady swimming and unsteady turning maneuvers. Digital particle image velocimetry was used to visualize wake structures and to calculate in vivo locomotor forces. Study of the vortices generated simultaneously by the soft dorsal and caudal fins during locomotion allowed experimental characterization of median-fin wake interactions.During high-speed swimming (i.e. above the gait transition from pectoral- to median-fin locomotion), the soft dorsal fin undergoes regular oscillatory motion which, in comparison with analogous movement by the tail, is phase-advanced (by 30% of the cycle period) and of lower sweep amplitude (by 1.0cm). Undulations of the soft dorsal fin during steady swimming at 1.1bodylengths−1 generate a reverse von Kármán vortex street wake that contributes 12% of total thrust. During low-speed turns, the soft dorsal fin produces discrete pairs of counterrotating vortices with a central region of high-velocity jet flow. This vortex wake, generated in the latter stage of the turn and posterior to the center of mass of the body, counteracts torque generated earlier in the turn by the anteriorly positioned pectoral fins and thereby corrects the heading of the fish as it begins to translate forward away from the turning stimulus. One-third of the laterally directed fluid force measured during turning is developed by the soft dorsal fin. For steady swimming, we present empirical evidence that vortex structures generated by the soft dorsal fin upstream can constructively interact with those produced by the caudal fin downstream. Reinforcement of circulation around the tail through interception of the dorsal fin’s vortices is proposed as a mechanism for augmenting wake energy and enhancing thrust.Swimming in fishes involves the partitioning of locomotor force among several independent fin systems. Coordinated use of the pectoral fins, caudal fin and soft dorsal fin to increase wake momentum, as documented for L. macrochirus, highlights the ability of teleost fishes to employ multiple propulsors simultaneously for controlling complex swimming behaviors.


1994 ◽  
Vol 189 (1) ◽  
pp. 133-161 ◽  
Author(s):  
A Gibb ◽  
B Jayne ◽  
G Lauder

The pectoral fins of ray-finned fishes are flexible and capable of complex movements, and yet little is known about the pattern of fin deformation during locomotion. For the most part, pectoral fins have been modeled as rigid plates. In order to examine the movements of different portions of pectoral fins, we quantified the kinematics of pectoral fin locomotion in the bluegill sunfish Lepomis macrochirus using several points on the distal fin edge and examined the effects of swimming speed on fin movements. We simultaneously videotaped the ventral and lateral views of pectoral fins of four fish swimming in a flow tank at five speeds ranging from 0.3 to 1.1 total lengths s-1. Four markers, placed on the distal edge of the fin, facilitated field-by-field analysis of kinematics. We used analyses of variance to test for significant variation with speed and among the different marker positions. Fin beat frequency increased significantly from 1.2 to 2.1 Hz as swimming speed increased from 0.3 to 1.0 total lengths s-1. Maximal velocities of movement for the tip of the fin during abduction and adduction generally increased significantly with increased swimming speed. The ratio of maximal speed of fin retraction to swimming speed declined steadily from 2.75 to 1.00 as swimming speed increased. Rather than the entire distal edge of the fin always moving synchronously, markers had phase lags as large as 32 with respect to the dorsal edge of the fin. The more ventral and proximal portions of the fin edge usually had smaller amplitudes of movement than did the more dorsal and distal locations. With increased swimming speed, the amplitudes of the lateral and longitudinal fin movements generally decreased. We used two distal markers and one basal reference point to determine the orientation of various planar fin elements. During early adduction and most of abduction, these planar fin elements usually had positive angles of attack. Because of fin rotation, angles of attack calculated from three-dimensional data differed considerably from those estimated from a simple lateral projection. As swimming speed increased, the angles of attack of the planar fin elements with respect to the overall direction of swimming approached zero. The oscillatory movements of the pectoral fins of bluegill suggest that both lift- and drag-based propulsive mechanisms are used to generate forward thrust. In addition, the reduced frequency parameter calculated for the pectoral fin of Lepomis (sigma=0.85) and the Reynolds number of 5x10(3) indicate that acceleration reaction forces may contribute significantly to thrust production and to the total force balance on the fin.


2018 ◽  
Author(s):  
Margot A. B. Schwalbe ◽  
Alexandra L. Boden ◽  
Tyler N. Wise ◽  
Eric D. Tytell

AbstractFishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration cannot be transmitted effectively to the environment. Here, we investigate whether fish can use their red muscle to stiffen their bodies during acceleration. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.


1985 ◽  
Vol 119 (1) ◽  
pp. 1-30 ◽  
Author(s):  
RICHARD J. WASSERSUG ◽  
KARIN VON SECHENDORF HOFF

The kinematics of swimming in tadpoles from four species of anurans (Rana catesbeiana Shaw, Rana septentrionalis Baird, Rana clamitans Latreille and Bufo americanus Holbrook) was studied using computer-assisted analysis of high speed (≥200 frames s−1) ciné records. 1. Tadpoles exhibit the same positive, linear relationship between tail beat frequency and specific swimming speed commonly reported for subcarangiform fishes. 2. Tadpoles show an increase in the maximum amplitude of the tail beat with increasing swimming speed up to approximately 4 lengths s−1. Above 4 lengths s−1, amplitude approaches an asymptote at approximately 25 % of length. 3. Tadpoles with relatively longer tails have lower specific amplitudes. 4. Froude efficiencies for tadpoles are similar to those reported for most subcarangiform fishes. 5. Bufo larvae tend to have higher specific maximum amplitude, higher tail beat frequencies, lower propeller efficiencies (at least at intermediate speeds) and substantially less axial musculature than do comparable-sized Rana larvae. These differences may relate to the fact that Bufo larvae are noxious to many potential predators and consequently need not rely solely on locomotion for defence. 6. Tadpoles exhibit larger amounts of lateral movement at the snout than do most adult fishes. 7. The point of least lateral movement during swimming in tadpoles is at the level of the semi-circular canals, as assumed in models on the evolution of the vertebrate inner ear. 8. Passive oscillation of anaesthetized and curarized tadpoles at the base of their tail produces normal kinematics in the rest of the tail. This supports the idea that muscular activity in the posterior, tapered portion of the tadpole tail does not serve a major role in thrust production during normal, straightforward swimming at constant velocity. 9. The angle of incidence and lateral velocity of the tail tip as it crosses the path of motion are not consistent with theoretical predictions of how thrust should be generated. The same parameters evaluated at the high point of the tail fin (approximately midtail) suggest that that portion of the tail generates thrust most effectively. 10. Ablation of the end of the tail in passively oscillated tadpoles confirms that the terminal portion of the tadpole tail serves to reduce excessive amplitude in the more anterior portion of the tail, where most thrust is generated. 11. The posterior portion of the tail is important in reducing turbulence around a tadpole. It may also function to produce thrust during irregular, intricate movements, such as swimming backwards. 12. Tadpoles are comparable to subcarangiform fishes of similar size in their maximum swimming speed and mechanical efficiency, despite the fact that they have much less axial musculature and lack the elaborate skeletal elements that stiffen the fins in fishes. The simple shape of the tadpole tail appears to allow these animals efficient locomotion over short distances and high manoeuvrability, while maintaining the potential for rapid morphological change at metamorphosis.


1990 ◽  
Vol 154 (1) ◽  
pp. 163-178 ◽  
Author(s):  
LAWRENCE C. ROME ◽  
R. MCNEILL ALEXANDER

The aim of this study was to evaluate how fish locomote at different muscle temperatures. Sarcomere length excursion and muscle shortening velocity, V, were determined from high-speed motion pictures of carp, Cyprinus carpio (11–14 cm), swimming steadily at various sustained speeds at 10, 15 and 20°C. In the middle and posterior regions of the carp, sarcomeres of the lateral red muscle underwent cyclical excursions of 0.31 μm, centred around the resting length of 2.06 μm (i.e. from 1.91 to 2.22 μm). The amplitudes of the sarcomere length excursions were essentially independent of swimming speed and temperature. As tail-beat frequency increased linearly with swimming speed regardless of temperature, the sarcomeres underwent the same length changes in a shorter time. Thus, V increased in a linear and temperature-independent manner with swimming speed. Neither temperature nor swimming speed had an influence on tail-beat amplitude or tail height. Our findings indicate that muscle fibres are used only over a narrow, temperature-independent range of V/Vmax (0.17-0.36) where power and efficiency are maximal. Carp start to recruit their white muscles at swimming speeds where the red muscle V/Vmax becomes too high (and thus power output declines). When the V/Vmax of the active muscle falls too low during steady swimming, carp switch to ‘burst-and-coast’ swimming, apparently to keep V/Vmax high. Because Vmax (maximum velocity of shortening) of carp red muscle has a Q10 of 1.63, the transition speeds between swimming styles are lower at lower temperatures. Thus, carp recruit their white anaerobic muscle at a lower swimming speed at lower temperatures (verified by electromyography), resulting in a lower maximum sustainable swimming speed. The present findings also indicate that, to generate the same total force and power to swim at a given speed, carp at 10°C must recruit about 50% greater fibre cross-sectional area than they do at 20°C. Note: Present address: Department of Plant Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA. Present address: Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT, England.


1997 ◽  
Vol 200 (4) ◽  
pp. 767-784 ◽  
Author(s):  
G Gillis

Many workers interested in the mechanics and kinematics of undulatory aquatic locomotion have examined swimming in fishes that use a carangiform or subcarangiform mode. Few empirical data exist describing and quantifying the movements of elongate animals using an anguilliform mode of swimming. Using high-speed video, I examine the axial undulatory kinematics of an elongate salamander, Siren intermedia, in order to provide data on how patterns of movement during swimming vary with body position and swimming speed. In addition, swimming kinematics are compared with those of other elongate vertebrates to assess the similarity of undulatory movements within the anguilliform locomotor mode. In Siren, most kinematic patterns vary with longitudinal position. Tailbeat period and frequency, stride length, Froude efficiency and the lateral velocity and angle of attack of tail segments all vary significantly with swimming speed. Although swimming speed does not show a statistically significant effect on kinematic variables such as maximum undulatory amplitude (which increases non-linearly along the body), intervertebral flexion and path angle, examination of the data suggests that speed probably has subtle and site-specific effects on these variables which are not detected here owing to the small sample size. Maximum lateral displacement and flexion do not coincide in time within a given tailbeat cycle. Furthermore, the maximum orientation (angle with respect to the animal's direction of forward movement) and lateral velocity of tail segments also do not coincide in time. Comparison of undulatory movements among diverse anguilliform swimmers suggests substantial variation across taxa in parameters such as tailbeat amplitude and in the relationship between tailbeat frequency and swimming speed. This variation is probably due, in part, to external morphological differences in the shape of the trunk and tail among these taxa.


Sign in / Sign up

Export Citation Format

Share Document