scholarly journals Rapid Time-stamped Analysis of Filament Motility

2018 ◽  
Author(s):  
Gijs Ijpma ◽  
Zsombor Balassy ◽  
Anne-Marie Lauzon

AbstractThe in vitro motility assay is a valuable tool to understand motor protein mechanics, but existing algorithms are not optimized for accurate time resolution. We propose an algorithm that combines trace detection with a time-stamped analysis. By tracking filament ends, we minimize data loss from overlapping and crossing filaments. A movement trace formed by each filament end is created by time-stamping when the filament either first (filament tip) or last (filament tail) occupies a pixel. A frame number vs distance curve is generated from this trace, which is segmented into regions by slope to detect stop-and-go movement. We show, using generated mock motility videos, accurate detection of velocity and motile fraction changes for velocities <0.05 pixels per frame, without manual trace dropping and regardless of filament crossings. Compared with established algorithms we show greatly improved accuracy in velocity and motile fraction estimation, with greatly reduced user effort. We tested two actual motility experiments: 1) Adenosine triphosphate (ATP) added to skeletal myosin in rigor; 2) myosin light chain phosphatase (MLCP) added to phasic smooth muscle myosin. Our algorithm revealed previously undetectable features: 1) rapid increase in motile fraction paralleled by a slow increase in velocity as ATP concentration increases; 2) simultaneous reductions in velocity and motile fraction as MLCP diffuses into the motility chamber at very low velocities. Our algorithm surpasses existing algorithms in the resolution of time dependent changes in motile fraction and velocity at a wide range of filament lengths and velocities, with minimal user input and CPU time.

2012 ◽  
Vol 102 (3) ◽  
pp. 146a
Author(s):  
Malin Persson ◽  
Elina Bengtsson ◽  
Lasse ten Siethoff ◽  
Maria Gullberg ◽  
Conny Tolf ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3466
Author(s):  
Svetlana V. Klinova ◽  
Boris A. Katsnelson ◽  
Ilzira A. Minigalieva ◽  
Oksana P. Gerzen ◽  
Alexander A. Balakin ◽  
...  

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


1995 ◽  
Vol 23 (3) ◽  
pp. 401S-401S ◽  
Author(s):  
Daren S. Jeffreys ◽  
Robert J. Eaton ◽  
Clive R. Bagshaw

Lab on a Chip ◽  
2018 ◽  
Vol 18 (20) ◽  
pp. 3196-3206 ◽  
Author(s):  
Till Korten ◽  
Elena Tavkin ◽  
Lara Scharrel ◽  
Vandana Singh Kushwaha ◽  
Stefan Diez

Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Aniruddha Mitra ◽  
Laura Meißner ◽  
Rojapriyadharshini Gandhimathi ◽  
Roman Renger ◽  
Felix Ruhnow ◽  
...  

Abstract Within the mitotic spindle, kinesin motors cross-link and slide overlapping microtubules. Some of these motors exhibit off-axis power strokes, but their impact on motility and force generation in microtubule overlaps has not been investigated. Here, we develop and utilize a three-dimensional in vitro motility assay to explore kinesin-14, Ncd, driven sliding of cross-linked microtubules. We observe that free microtubules, sliding on suspended microtubules, not only rotate around their own axis but also move around the suspended microtubules with right-handed helical trajectories. Importantly, the associated torque is large enough to cause microtubule twisting and coiling. Further, our technique allows us to measure the in situ spatial extension of the motors between cross-linked microtubules to be about 20 nm. We argue that the capability of microtubule-crosslinking kinesins to cause helical motion of overlapping microtubules around each other allows for flexible filament organization, roadblock circumvention and torque generation in the mitotic spindle.


2019 ◽  
Vol 10 ◽  
Author(s):  
Nasrin Bopp ◽  
Lisa-Mareike Scheid ◽  
Rainer H. A. Fink ◽  
Karl Rohr

2001 ◽  
Vol 280 (4) ◽  
pp. C782-C788 ◽  
Author(s):  
Peter Höök ◽  
Vidyasagar Sriramoju ◽  
Lars Larsson

The effects of aging on the mechanical properties of myosin were measured in 87 fibers from muscles of humans ( n = 40), rats ( n = 21), and mice ( n = 26) using a single fiber in vitro motility assay. Irrespective of species, an 18–25% aging-related slowing in the speed of actin filaments was observed from 62 single fibers expressing the slow (type I) β-myosin heavy chain isoform. The mechanisms underlying the aging-related slowing of motility speed remain unknown, but it is suggested that posttranslational modifications of myosin by oxidative stress, glycation, or nitration play an important role. The aging-related slowing in the speed of actin filaments propelled by the type I myosin was confirmed in three mammalian species with an ∼3,400-fold difference in body size. Motility speed from human myosin was 3-fold slower than from myosin of the ∼3,400-fold smaller mouse and approximately twofold slower when compared with the ∼130-fold smaller rat, irrespective of age. A strong correlation was observed between the log values of actin sliding speed and body mass, suggesting that the effects of scaling is, at least in part, due to altered functional properties of the motor protein itself.


Sign in / Sign up

Export Citation Format

Share Document