scholarly journals Origin and evolution of papillomavirus (onco)genes and genomes

2018 ◽  
Author(s):  
Anouk Willemsen ◽  
Ignacio G. Bravo

ABSTRACTPapillomaviruses (PVs) are ancient viruses infecting vertebrates, from fish to mammals. Although the genomes of PVs are small and show conserved synteny, PVs display large genotypic diversity and ample variation in the phenotypic presentation of the infection. Most PVs genomes contain two small early genes E6 and E7. In a bunch of closely related human PVs, the E6 and E7 proteins provide the viruses with oncogenic potential.The recent discoveries of PVs without E6 and E7 in different fish species place a new root on the PV tree, and suggest that the ancestral PV consisted of the minimal PV backbone E1-E2-L2-L1.Bayesian phylogenetic analyses date the most recent common ancestor of the PV backbone to 424 million years ago (Ma). Common ancestry tests on extant E6 and E7 genes indicate that they share respectively a common ancestor dating back to at least 184 Ma. In AlphaPVs infecting primates, the appearance of the E5 oncogene 53-58 Ma concurred with i) a significant increase in substitution rate, ii) a basal radiation, and iii) key gain of functions in E6 and E7. This series of events was instrumental to build the extant phenotype of oncogenic human PVs.Our results assemble the current knowledge on PV diversity and present an ancient evolutionary timeline punctuated by evolutionary innovations in the history of this successful viral family.

2019 ◽  
Vol 374 (1773) ◽  
pp. 20180303 ◽  
Author(s):  
Anouk Willemsen ◽  
Ignacio G. Bravo

Papillomaviruses (PVs) are ancient viruses infecting vertebrates, from fishes to mammals. Although the genomes of PVs are small and show conserved synteny, PVs display large genotypic diversity and ample variation in the phenotypic presentation of the infection. Most PV genomes contain two small early genes E6 and E7 . In a bunch of closely related human papillomaviruses (HPVs), the E6 and E7 proteins provide the viruses with oncogenic potential. The recent discoveries of PVs without E6 and E7 in different fish species place a new root on the PV tree, and suggest that ancestral PVs consisted of the minimal PV backbone E1-E2-L2-L1 . Bayesian phylogenetic analyses date the most recent common ancestor of the PV backbone to 424 million years ago (Ma). Common ancestry tests on extant E6 and E7 genes indicate that they share a common ancestor dating back to at least 184 Ma. In AlphaPVs infecting Old World monkeys and apes, the appearance of the E5 oncogene 53–58 Ma concurred with (i) a significant increase in substitution rate, (ii) a basal radiation and (iii) key gain of functions in E6 and E7. This series of events was instrumental to construct the extant phenotype of oncogenic HPVs. Our results assemble the current knowledge on PV diversity and present an ancient evolutionary timeline punctuated by evolutionary innovations in the history of this successful viral family. This article is part of the theme issue ‘Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses’.


1998 ◽  
Vol 95 (16) ◽  
pp. 9402-9406 ◽  
Author(s):  
Bruce G. Baldwin ◽  
Michael J. Sanderson

Comparisons between insular and continental radiations have been hindered by a lack of reliable estimates of absolute diversification rates in island lineages. We took advantage of rate-constant rDNA sequence evolution and an “external” calibration using paleoclimatic and fossil data to determine the maximum age and minimum diversification rate of the Hawaiian silversword alliance (Compositae), a textbook example of insular adaptive radiation in plants. Our maximum-age estimate of 5.2 ± 0.8 million years ago for the most recent common ancestor of the silversword alliance is much younger than ages calculated by other means for the Hawaiian drosophilids, lobelioids, and honeycreepers and falls approximately within the history of the modern high islands (≤5.1 ± 0.2 million years ago). By using a statistically efficient estimator that reduces error variance by incorporating clock-based estimates of divergence times, a minimum diversification rate for the silversword alliance was estimated to be 0.56 ± 0.17 species per million years. This exceeds average rates of more ancient continental radiations and is comparable to peak rates in taxa with sufficiently rich fossil records that changes in diversification rate can be reconstructed.


1998 ◽  
Vol 88 (8) ◽  
pp. 782-787 ◽  
Author(s):  
Drake C. Stenger ◽  
Jeffrey S. Hall ◽  
Il-Ryong Choi ◽  
Roy French

The complete nucleotide sequence of wheat streak mosaic virus (WSMV) has been determined based on complementary DNA clones derived from the 9,384-nucleotide (nt) RNA of the virus. The genome of WSMV has a 130-nt 5′ leader and 149-nt 3′-untranslated region and is polyadenylated at the 3′ end. WSMV RNA encodes a single polyprotein of 3,035 amino acid residues and has a deduced genome organization typical for a member of the family Potyviridae (5′-P1/HC-Pro/P3/6K1/CI/6K2/VPg-NIa/NIb/CP-3′). Because WSMV shares with ryegrass mosaic virus (RGMV) the biological property of transmission by eriophyid mites, WSMV has been assigned to the genus Rymovirus, of which RGMV is the type species. Phylogenetic analyses were conducted with complete polyprotein or NIb protein sequences of 11 members of the family Potyviridae, including viruses of monocots or dicots and viruses transmitted by aphids, whiteflies, and mites. WSMV and the monocot-infecting, mite-transmitted brome streak mosaic virus (BrSMV) are sister taxa and share a most recent common ancestor with the whitefly-transmitted sweet potato mild mottle virus, the type species of the proposed genus “Ipomovirus.” In contrast, RGMV shares a most recent common ancestor with aphid-transmitted species of the genus Potyvirus. These results indicate that WSMV and BrSMV should be classified within a new genus of the family Potyviridae and should not be considered species of the genus Rymovirus.


Author(s):  
vicente cabrera

Ancient DNA has given a new vision to the recent history of human evolution. However, by always relying on the information provided by whole genome sequencing, some relevant relationships between modern humans and its archaic relatives have been misinterpreted by hybridization and recombination causes. In contrast, the congruent phylogeny, obtained from non-recombinant uniparental markers, indicates that humans and Neanderthals are sister subspecies, and that the most recent common ancestor of modern humans was not of African origin but Eurasian.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3844 ◽  
Author(s):  
Cara Van Der Wal ◽  
Shane T. Ahyong ◽  
Simon Y.W. Ho ◽  
Nathan Lo

The crustacean order Stomatopoda comprises seven superfamilies of mantis shrimps, found in coastal waters of the tropics and subtropics. These marine carnivores bear notable raptorial appendages for smashing or spearing prey. We investigated the evolutionary relationships among stomatopods using phylogenetic analyses of three mitochondrial and two nuclear markers. Our analyses recovered the superfamily Gonodactyloidea as polyphyletic, withHemisquillaas the sister group to all other extant stomatopods. A relaxed molecular clock, calibrated by seven fossil-based age constraints, was used to date the origin and major diversification events of stomatopods. Our estimates suggest that crown-group stomatopods (Unipeltata) diverged from their closest crustacean relatives about 340 Ma (95% CRI [401–313 Ma]). We found that the specialized smashing appendage arose after the spearing appendage ∼126 Ma (95% CRI [174–87 Ma]). Ancestral state reconstructions revealed that the most recent common ancestor of extant stomatopods had eyes with six midband rows of hexagonal ommatidia. Hexagonal ommatidia are interpreted as plesiomorphic in stomatopods, and this is consistent with the malacostracan ground-plan. Our study provides insight into the evolutionary timescale and systematics of Stomatopoda, although further work is required to resolve with confidence the phylogenetic relationships among its superfamilies.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw5873 ◽  
Author(s):  
Stéphane Peyrégne ◽  
Viviane Slon ◽  
Fabrizio Mafessoni ◽  
Cesare de Filippo ◽  
Mateja Hajdinjak ◽  
...  

Little is known about the population history of Neandertals over the hundreds of thousands of years of their existence. We retrieved nuclear genomic sequences from two Neandertals, one from Hohlenstein-Stadel Cave in Germany and the other from Scladina Cave in Belgium, who lived around 120,000 years ago. Despite the deeply divergent mitochondrial lineage present in the former individual, both Neandertals are genetically closer to later Neandertals from Europe than to a roughly contemporaneous individual from Siberia. That the Hohlenstein-Stadel and Scladina individuals lived around the time of their most recent common ancestor with later Neandertals suggests that all later Neandertals trace at least part of their ancestry back to these early European Neandertals.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8418 ◽  
Author(s):  
S. Christopher Bennett

The six known specimens of Scleromochlus taylori and casts made from their negative impressions were examined to reassess the osteological evidence that has been used to interpret Scleromochlus’s locomotion and phylogenetic relationships. It was found that the trunk was dorsoventrally compressed. The upper temporal fenestra was on the lateral surface of skull and two-thirds the size of the lower, the jaw joint posteriorly placed with short retroarticular process, and teeth short and subconical, but no evidence of external nares or antorbital fossae was found. The posterior trunk was covered with ~20 rows of closely spaced transversely elongate dorsal osteoderms. The coracoid was robust and elongate. The acetabulum was imperforate and the femoral head hemispherical and only weakly inturned such that the hip joint was unsuited to swinging in a parasagittal plane. The presence of four distal tarsals is confirmed. The marked disparity of tibial and fibular shaft diameters and of proximal tarsal dimensions indicates that the larger proximal tarsal is the astragalus and the significantly smaller tarsal is the calcaneum. The astragalus and calcaneum bear little resemblance to those of Lagosuchus, and the prominent calcaneal tuber confirms that the ankle was crurotarsal. There is no evidence that preserved body and limb postures are unnatural, and most specimens are preserved in what is interpreted as a typical sprawling resting pose. A principal component analysis of skeletal measurements of Scleromochlus and other vertebrates of known locomotor type found Scleromochlus to plot with frogs, and that finding combined with skeletal morphology suggests Scleromochlus was a sprawling quadrupedal hopper. Phylogenetic analyses found that Scleromochlus was not an ornithodiran, but was either within the Doswelliidae or outside the clade consisting of the most recent common ancestor of the Erythrosuchidae and Archosauria and all its descendants.


1999 ◽  
Vol 354 (1388) ◽  
pp. 1447-1470 ◽  
Author(s):  
David Haig

Comparative gene mapping and chromosome painting permit the tentative reconstruction of ancestral karyotypes. The modern human karyotype is proposed to differ from that of the most recent common ancestor of catarrhine primates by two major rearrangements. The first was the fission of an ancestral chromosome to produce the homologues of human chromosomes 14 and 15. This fission occurred before the divergence of gibbons from humans and other apes. The second was the fusion of two ancestral chromosomes to form human chromosome 2. This fusion occurred after the divergence of humans and chimpanzees. Moving further back in time, homologues of human chromosomes 3 and 21 were formed by the fission of an ancestral linkage group that combined loci of both human chromosomes, whereas homologues of human chromosomes 12 and 22 were formed by a reciprocal translocation between two ancestral chromosomes. Both events occurred at some time after our most recent common ancestor with lemurs. Less direct evidence suggests that the short and long arms of human chromosomes 8, 16 and 19 were unlinked in this ancestor. Finally, the most recent common ancestor of primates and artiodactyls is proposed to have possessed a chromosome that combined loci from human chromosomes 4 and 8p, a chromosome that combined loci from human chromosomes 16q and 19q, and a chromosome that combined loci from human chromosomes 2p and 20.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1187-1198 ◽  
Author(s):  
Mikkel H Schierup ◽  
Xavier Vekemans ◽  
Freddy B Christiansen

Abstract Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.


Author(s):  
Wenjun Cheng ◽  
Tianjiao Ji ◽  
Shuaifeng Zhou ◽  
Yong Shi ◽  
Lili Jiang ◽  
...  

AbstractEchovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.


Sign in / Sign up

Export Citation Format

Share Document