scholarly journals A Model for the Peak-Interval Task Based on Neural Oscillation-Delimited States

2018 ◽  
Author(s):  
Thiago T. Varella ◽  
Marcelo Bussotti Reyes ◽  
Marcelo S. Caetano ◽  
Raphael Y. de Camargo

Specific mechanisms underlying how the brain keeps track of time are largely unknown. Several existing computational models of timing reproduce behavioral results obtained with experimental psychophysical tasks, but only a few tackle the underlying biological mechanisms, such as the synchronized neural activity that occurs through-out brain areas. In this paper, we introduce a model for the peak-interval task based on neuronal network properties. We consider that Local Field Potential (LFP) oscillation cycles specify a sequence of states, represented as neuronal ensembles. Repeated presentation of time intervals during training reinforces the connections of specific ensembles to downstream networks. Later, during the peak-interval procedure, these downstream networks are reactivated by previously experienced neuronal ensembles, triggering actions at the learned time intervals. The model reproduces experimental response patterns from individual rats in the peak-interval procedure, satisfying relevant properties such as the Weber law. Finally, we provide a biological interpretation of the parameters of the model.

2002 ◽  
Vol 87 (4) ◽  
pp. 2137-2148 ◽  
Author(s):  
Sean M. O'Connor ◽  
Rune W. Berg ◽  
David Kleinfeld

We tested if coherent signaling between the sensory vibrissa areas of cerebellum and neocortex in rats was enhanced as they whisked in air. Whisking was accompanied by 5- to 15-Hz oscillations in the mystatial electromyogram, a measure of vibrissa position, and by 5- to 20-Hz oscillations in the differentially recorded local field potential (∇LFP) within the vibrissa area of cerebellum and within the ∇LFP of primary sensory cortex. We observed that only 10% of the activity in either cerebellum or sensory neocortex was significantly phase-locked to rhythmic motion of the vibrissae; the extent of this modulation is in agreement with the results from previous single-unit measurements in sensory neocortex. In addition, we found that 40% of the activity in the vibrissa areas of cerebellum and neocortex was significantly coherent during periods of whisking. The relatively high level of coherence between these two brain areas, in comparison with their relatively low coherence with whisking per se, implies that the vibrissa areas of cerebellum and neocortex communicate in a manner that is incommensurate with whisking. To the extent that the vibrissa areas of cerebellum and neocortex communicate over the same frequency band as that used by whisking, these areas must multiplex electrical activity that is internal to the brain with activity that is that phase-locked to vibrissa sensory input.


2014 ◽  
Vol 112 (4) ◽  
pp. 741-751 ◽  
Author(s):  
Ramanujan Srinath ◽  
Supratim Ray

Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors—phase consistency as well as amplitude covariation across trials—but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over- or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.


2015 ◽  
Vol 114 (1) ◽  
pp. 309-322 ◽  
Author(s):  
Michael J. Shirey ◽  
Jared B. Smith ◽  
D'Anne E. Kudlik ◽  
Bing-Xing Huo ◽  
Stephanie E. Greene ◽  
...  

Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼0.1°C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼2°C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still >1°C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.


Author(s):  
Sean Reed ◽  
Sonia Jego ◽  
Antoine Adamantidis

This chapter discusses the history, practice, and application of electroencephalography (EEG) and local field potential (LFP) recordings, with a particular focus on animal models. EEG measures the fluctuations of electrical activity resulting from ionic currents in the brain. These measurements are often taken from electrodes placed on the surface of the scalp, or in animal models, directly on the skull. LFP recordings are more invasive, measuring electrical current from all nearby dendritic synaptic activity within a volume of tissue. These two techniques are useful in determining how neural activity can synchronize during different behavioral or motivational states.


2011 ◽  
Vol 32 (2) ◽  
pp. 306-317 ◽  
Author(s):  
Marta Gómez-Galán ◽  
Julia Makarova ◽  
Irene Llorente-Folch ◽  
Takeyori Saheki ◽  
Beatriz Pardo ◽  
...  

The deficiency in the mitochondrial aspartate/glutamate transporter Aralar/AGC1 results in a loss of the malate-aspartate NADH shuttle in the brain neurons, hypomyelination, and additional defects in the brain metabolism. We studied the development of cortico/hippocampal local field potential (LFP) in Aralar/AGC1 knockout (KO) mice. Laminar profiles of LFP, evoked potentials, and unit activity were recorded under anesthesia in young (P15 to P22) Aralar-KO and control mice as well as control adults. While LFP power increased 3 to 7 times in both cortex and hippocampus of control animals during P15 to P22, the Aralar-KO specimens hardly progressed. The divergence was more pronounced in the CA3/hilus region. In parallel, spontaneous multiunit activity declined severely in KO mice. Postnatal growth of hippocampal-evoked potentials was delayed in KO mice, and indicated abnormal synaptic and spike electrogenesis and reduced output at P20 to P22. The lack of LFP development in KO mice was accompanied by the gradual appearance of epileptic activity in the CA3/hilus region that evolved to status epilepticus. Strikingly, CA3 bursts were poorly conducted to the CA1 field. We conclude that disturbed substrate supply to neuronal mitochondria impairs development of cortico—hippocampal LFPs. Aberrant neuronal electrogenesis and reduced neuron output may explain circuit dysfunction and phenotype deficiencies.


2020 ◽  
Author(s):  
Zhang Yu ◽  
Ping Chen ◽  
Zhi-yi Tu ◽  
Yi-heng Liu ◽  
Zhi-ru Wang ◽  
...  

Abstract In this study, in vitro intact hippocampal preparation model was utilized to observe the effects of propofol and ketamine on the neural oscillations in CA1 of rat hippocampus. The intact hippocampi were dissected from the brain tissues of rats aged 14-16 days postnatal. Local field potential (LFP) recordings were performed with propofol and ketamine bath application at different concentrations. The power spectrum intensity of LFP in all the frequency bands, including delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-80 Hz), were inhibited in a concentrationdependent manner by both general anesthetics. In order to further investigate the underlying mechanisms, the major binding site of propofol and ketamine were blocked respectively by picrotoxin and (2R)-amino-5-phosphonopentanoate when bath applying the general anesthetics. It revealed that the inhibitory effect of propofol on hippocampal oscillations might be via γ-aminobutyric acid A receptor, while the inhibitory effect of ketamine might be unconcerned with N-methyl-D-aspartic acid receptor.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shuihan Qiu ◽  
Kaijia Sun ◽  
Zengru Di

The collective electrophysiological dynamics of the brain as a result of sleep-related biological drives in Drosophila are investigated in this paper. Based on the Huber-Braun thermoreceptor model, the conductance-based neurons model is extended to a coupled neural network to analyze the local field potential (LFP). The LFP is calculated by using two different metrics: the mean value and the distance-dependent LFP. The distribution of neurons around the electrodes is assumed to have a circular or grid distribution on a two-dimensional plane. Regardless of which method is used, qualitatively similar results are obtained that are roughly consistent with the experimental data. During wake, the LFP has an irregular or a regular spike. However, the LFP becomes regular bursting during sleep. To further analyze the results, wavelet analysis and raster plots are used to examine how the LFP frequencies changed. The synchronization of neurons under different network structures is also studied. The results demonstrate that there are obvious oscillations at approximately 8 Hz during sleep that are absent during wake. Different time series of the LFP can be obtained under different network structures and the density of the network will also affect the magnitude of the potential. As the number of coupled neurons increases, the neural network becomes easier to synchronize, but the sleep and wake time described by the LFP spectrogram do not change. Moreover, the parameters that affect the durations of sleep and wake are analyzed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Heng Zhou ◽  
Kevin R Neville ◽  
Nitsan Goldstein ◽  
Shushi Kabu ◽  
Naila Kausar ◽  
...  

Calcium is a critical second messenger in neurons that contributes to learning and memory, but how the coordination of action potentials of neuronal ensembles with the hippocampal local field potential (LFP) is reflected in dynamic calcium activity remains unclear. Here, we recorded hippocampal calcium activity with endoscopic imaging of the genetically encoded fluorophore GCaMP6 with concomitant LFP in freely behaving mice. Dynamic calcium activity was greater in exploratory behavior and REM sleep than in quiet wakefulness and slow wave sleep, behavioral states that differ with respect to theta and septal cholinergic activity, and modulated at sharp wave ripples (SWRs). Chemogenetic activation of septal cholinergic neurons expressing the excitatory hM3Dq DREADD increased calcium activity and reduced SWRs. Furthermore, inhibition of muscarinic acetylcholine receptors (mAChRs) reduced calcium activity while increasing SWRs. These results demonstrate that hippocampal dynamic calcium activity depends on behavioral and theta state as well as endogenous mAChR activation.


2021 ◽  
Author(s):  
Xiao Liu ◽  
David A. Leopold ◽  
Yifan Yang

AbstractThe resting brain consumes enormous energy and shows highly organized spontaneous activity. To investigate how this activity is manifest among single neurons, we analyzed spiking discharges of ∼10,000 isolated cells recorded from multiple cortical and subcortical regions of the mouse brain during immobile rest. We found that firing of a significant proportion (∼70%) of neurons conformed to a ubiquitous, temporally sequenced cascade of spiking that was synchronized with global events and elapsed over timescales of 5-10 seconds. Across the brain, two intermixed populations of neurons supported orthogonal cascades. The relative phases of these cascades determined, at each moment, the response magnitude evoked by an external visual stimulus. Furthermore, the spiking of individual neurons embedded in these cascades was time locked to physiological indicators of arousal, including local field potential (LFP) power, pupil diameter, and hippocampal ripples. These findings demonstrate that the large-scale coordination of low-frequency spontaneous activity, which is commonly observed in brain imaging and linked to arousal, sensory processing, and memory, is underpinned by sequential, large-scale temporal cascades of neuronal spiking across the brain.


Sign in / Sign up

Export Citation Format

Share Document