scholarly journals Collective Dynamics of Neural Networks With Sleep-Related Biological Drives in Drosophila

2021 ◽  
Vol 15 ◽  
Author(s):  
Shuihan Qiu ◽  
Kaijia Sun ◽  
Zengru Di

The collective electrophysiological dynamics of the brain as a result of sleep-related biological drives in Drosophila are investigated in this paper. Based on the Huber-Braun thermoreceptor model, the conductance-based neurons model is extended to a coupled neural network to analyze the local field potential (LFP). The LFP is calculated by using two different metrics: the mean value and the distance-dependent LFP. The distribution of neurons around the electrodes is assumed to have a circular or grid distribution on a two-dimensional plane. Regardless of which method is used, qualitatively similar results are obtained that are roughly consistent with the experimental data. During wake, the LFP has an irregular or a regular spike. However, the LFP becomes regular bursting during sleep. To further analyze the results, wavelet analysis and raster plots are used to examine how the LFP frequencies changed. The synchronization of neurons under different network structures is also studied. The results demonstrate that there are obvious oscillations at approximately 8 Hz during sleep that are absent during wake. Different time series of the LFP can be obtained under different network structures and the density of the network will also affect the magnitude of the potential. As the number of coupled neurons increases, the neural network becomes easier to synchronize, but the sleep and wake time described by the LFP spectrogram do not change. Moreover, the parameters that affect the durations of sleep and wake are analyzed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xin Qi ◽  
Yanan Zhao ◽  
Yufang Huang ◽  
Yang Wang ◽  
Wei Qin ◽  
...  

AbstractThe accurate and nondestructive assessment of leaf nitrogen (N) is very important for N management in winter wheat fields. Mobile phones are now being used as an additional N diagnostic tool. To overcome the drawbacks of traditional digital camera diagnostic methods, a histogram-based method was proposed and compared with the traditional methods. Here, the field N level of six different wheat cultivars was assessed to obtain canopy images, leaf N content, and yield. The stability and accuracy of the index histogram and index mean value of the canopy images in different wheat cultivars were compared based on their correlation with leaf N and yield, following which the best diagnosis and prediction model was selected using the neural network model. The results showed that N application significantly affected the leaf N content and yield of wheat, as well as the hue of the canopy images and plant coverage. Compared with the mean value of the canopy image color parameters, the histogram could reflect both the crop coverage and the overall color information. The histogram thus had a high linear correlation with leaf N content and yield and a relatively stable correlation across different growth stages. Peak b of the histogram changed with the increase in leaf N content during the reviving stage of wheat. The histogram of the canopy image color parameters had a good correlation with leaf N content and yield. Through the neural network training and estimation model, the root mean square error (RMSE) and the mean absolute percentage error (MAPE) of the estimated and measured values of leaf N content and yield were smaller for the index histogram (0.465, 9.65%, and 465.12, 5.5% respectively) than the index mean value of the canopy images (0.526, 12.53% and 593.52, 7.83% respectively), suggesting a good fit for the index histogram image color and robustness in estimating N content and yield. Hence, the use of the histogram model with a smartphone has great potential application in N diagnosis and prediction for wheat and other cereal crops.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


2021 ◽  
Vol 12 (4) ◽  
pp. 178
Author(s):  
Gilles Van Van Kriekinge ◽  
Cedric De De Cauwer ◽  
Nikolaos Sapountzoglou ◽  
Thierry Coosemans ◽  
Maarten Messagie

The increasing penetration rate of electric vehicles, associated with a growing charging demand, could induce a negative impact on the electric grid, such as higher peak power demand. To support the electric grid, and to anticipate those peaks, a growing interest exists for forecasting the day-ahead charging demand of electric vehicles. This paper proposes the enhancement of a state-of-the-art deep neural network to forecast the day-ahead charging demand of electric vehicles with a time resolution of 15 min. In particular, new features have been added on the neural network in order to improve the forecasting. The forecaster is applied on an important use case of a local charging site of a hospital. The results show that the mean-absolute error (MAE) and root-mean-square error (RMSE) are respectively reduced by 28.8% and 19.22% thanks to the use of calendar and weather features. The main achievement of this research is the possibility to forecast a high stochastic aggregated EV charging demand on a day-ahead horizon with a MAE lower than 1 kW.


1993 ◽  
Vol 32 (01) ◽  
pp. 55-58 ◽  
Author(s):  
M. N. Narayanan ◽  
S. B. Lucas

Abstract:The ability of neural networks to predict the international normalised ratio (INR) for patients treated with Warfarin was investigated. Neural networks were obtained by using all the predictor variables in the neural network, or by using a genetic algorithm to select an optimal subset of predictor variables in a neural network. The use of a genetic algorithm gave a marked and significant improvement in the prediction of the INR in two of the three cases investigated. The mean error in these cases, typically, reduced from 1.02 ± 0.29 to 0.28 ± 0.25 (paired t-test, t = −4.71, p <0.001, n = 30). The use of a genetic algorithm with Warfarin data offers a significant enhancement of the predictive ability of a neural network with Warfarin data, identifies significant predictor variables, reduces the size of the neural network and thus the speed at which the reduced network can be trained, and reduces the sensitivity of a network to over-training.


Author(s):  
Junming Zhang ◽  
Jinglin Li

Moving objects gathering pattern represents a group events or incidents that involve congregation of moving objects, enabling the analysis of traffic system. However, how to improve the effectiveness and efficiency of the gathering pattern discovering method still remains as a challenging issue since the large number of moving objects will generate high volume of trajectory data. In order to address this issue, the authors propose a method to discovering the gathering pattern by analyzing the taxicab demand. This paper first introduces the concept of Taxicab Service Rate (TSR). In this method, they use the KS measures to test the distribution of TSR and calculate the mean value of the TSR of a certain time period. Then, the authors use a neural network based method Neural Network Gathering Discovering (NNGD) to detect the gathering pattern. The neural network is based on the knowledge of historical gathering pattern data. The authors have implemented their method with experiments based on real trajectory data. The results show the both effectiveness and efficiency of their method.


2002 ◽  
Vol 87 (4) ◽  
pp. 2137-2148 ◽  
Author(s):  
Sean M. O'Connor ◽  
Rune W. Berg ◽  
David Kleinfeld

We tested if coherent signaling between the sensory vibrissa areas of cerebellum and neocortex in rats was enhanced as they whisked in air. Whisking was accompanied by 5- to 15-Hz oscillations in the mystatial electromyogram, a measure of vibrissa position, and by 5- to 20-Hz oscillations in the differentially recorded local field potential (∇LFP) within the vibrissa area of cerebellum and within the ∇LFP of primary sensory cortex. We observed that only 10% of the activity in either cerebellum or sensory neocortex was significantly phase-locked to rhythmic motion of the vibrissae; the extent of this modulation is in agreement with the results from previous single-unit measurements in sensory neocortex. In addition, we found that 40% of the activity in the vibrissa areas of cerebellum and neocortex was significantly coherent during periods of whisking. The relatively high level of coherence between these two brain areas, in comparison with their relatively low coherence with whisking per se, implies that the vibrissa areas of cerebellum and neocortex communicate in a manner that is incommensurate with whisking. To the extent that the vibrissa areas of cerebellum and neocortex communicate over the same frequency band as that used by whisking, these areas must multiplex electrical activity that is internal to the brain with activity that is that phase-locked to vibrissa sensory input.


2005 ◽  
Vol 17 (8) ◽  
pp. 1739-1775 ◽  
Author(s):  
Osamu Hoshino

We propose two distinct types of norepinephrine (NE)-neuromodulatory systems: an enhanced-excitatory and enhanced-inhibitory (E-E/E-I) system and a depressed-excitatory and enhanced-inhibitory (D-E/E-I) system. In both systems, inhibitory synaptic efficacies are enhanced, but excitatory ones are modified in a contradictory manner: the E-E/E-I system enhances excitatory synaptic efficacies, whereas the D-E/E-I system depresses them. The E-E/E-I and D-E/E-I systems altered the dynamic property of ongoing (background) neuronal activity and greatly influenced the cognitive performance (S/N ratio) of a cortical neural network. The E-E/E-I system effectively enhanced S/N ratio for weaker stimuli with lower doses of NE, whereas the D-E/E-I system enhanced stronger stimuli with higher doses of NE. The neural network effectively responded to weaker stimuli if brief γ-bursts were involved in ongoing neuronal activity that is controlled under the E-E/E-I neuromodulatory system. If the E-E/E-I and the D-E/E-I systems interact within the neural network, depressed neurons whose activity is depressed by NE application have bimodal property. That is, S/N ratio can be enhanced not only for stronger stimuli as its original property but also for weaker stimuli, for which coincidental neuronal firings among enhanced neurons whose activity is enhanced by NE application are essential. We suggest that the recruitment of the depressed neurons for the detection of weaker (subthreshold) stimuli might be advantageous for the brain to cope with a variety of sensory stimuli.


2019 ◽  
Vol 36 (9) ◽  
pp. 1835-1847
Author(s):  
Jie Yang ◽  
Qingquan Liu ◽  
Wei Dai

Accurate air temperature measurements are demanded for climate change research. However, air temperature sensors installed in a screen or a radiation shield have traditionally resisted observation accuracy due to a number of factors, particularly solar radiation. Here we present a novel temperature sensor array to improve the air temperature observation accuracy. To obtain an optimum design of the sensor array, we perform a series of analyses of the sensor array with various structures based on a computational fluid dynamics (CFD) method. Then the CFD method is applied to obtain quantitative radiation errors of the optimum temperature sensor array. For further improving the measurement accuracy of the sensor array, an artificial neural network model is developed to learn the relationship between the radiation error and environment variables. To assess the extent to which the actual performance adheres to the theoretical CFD model and the neural network model, air temperature observation experiments are conducted. An aspirated temperature measurement platform with a forced airflow rate up to 20 m s−1 served as an air temperature reference. The average radiation errors of a temperature sensor equipped with a naturally ventilated radiation shield and a temperature sensor installed in a screen are 0.42° and 0.23°C, respectively. By contrast, the mean radiation error of the temperature sensor array is approximately 0.03°C. The mean absolute error (MAE) between the radiation errors provided by the experiments and the radiation errors given by the neural network model is 0.007°C, and the root-mean-square error (RMSE) is 0.009°C.


2019 ◽  
pp. S453-S458
Author(s):  
R. Krupička ◽  
S. Mareček ◽  
C. Malá ◽  
M. Lang ◽  
O. Klempíř ◽  
...  

Neuromelanin (NM) is a black pigment located in the brain in substantia nigra pars compacta (SN) and locus coeruleus. Its loss is directly connected to the loss of nerve cells in this part of the brain, which plays a role in Parkinson’s Disease. Magnetic resonance imaging (MRI) is an ideal tool to monitor the amount of NM in the brain in vivo. The aim of the study was the development of tools and methodology for the quantification of NM in a special neuromelanin-sensitive MRI images. The first approach was done by creating regions of interest, corresponding to the anatomical position of SN based on an anatomical atlas and determining signal intensity threshold. By linking the anatomical and signal intensity information, we were able to segment the SN. As a second approach, the neural network U-Net was used for the segmentation of SN. Subsequently, the volume characterizing the amount of NM in the SN region was calculated. To verify the method and the assumptions, data available from various patient groups were correlated. The main benefit of this approach is the observer-independency of quantification and facilitation of the image processing process and subsequent quantification compared to the manual approach. It is ideal for automatic processing many image sets in one batch.


Sign in / Sign up

Export Citation Format

Share Document