scholarly journals Criticality between cortical states

2018 ◽  
Author(s):  
Antonio J. Fontenele ◽  
Nivaldo A. P. de Vasconcelos ◽  
Thaís Feliciano ◽  
Leandro A. A. Aguiar ◽  
Carina Soares-Cunha ◽  
...  

Since the first measurements of neuronal avalanches [1], the critical brain hypothesis has gained traction [2]. However, if the brain is critical, what is the phase transition? For several decades it has been known that the cerebral cortex operates in a diversity of regimes [3], ranging from highly synchronous states (e.g. slow wave sleep [4], with higher spiking variability) to desynchronized states (e.g. alert waking [5], with lower spiking variability). Here, using independent signatures of criticality, we show that a phase transition occurs in an intermediate value of spiking variability. The critical exponents point to a universality class different from mean-field directed percolation (MF-DP). Importantly, as the cortex hovers around this critical point [6], it follows a linear relation between the avalanche exponents that encompasses previous experimental results from different setups [7, 8] and is reproduced by a model.

2021 ◽  
Vol 14 ◽  
Author(s):  
Tawan T. A. Carvalho ◽  
Antonio J. Fontenele ◽  
Mauricio Girardi-Schappo ◽  
Thaís Feliciano ◽  
Leandro A. A. Aguiar ◽  
...  

Recent experimental results on spike avalanches measured in the urethane-anesthetized rat cortex have revealed scaling relations that indicate a phase transition at a specific level of cortical firing rate variability. The scaling relations point to critical exponents whose values differ from those of a branching process, which has been the canonical model employed to understand brain criticality. This suggested that a different model, with a different phase transition, might be required to explain the data. Here we show that this is not necessarily the case. By employing two different models belonging to the same universality class as the branching process (mean-field directed percolation) and treating the simulation data exactly like experimental data, we reproduce most of the experimental results. We find that subsampling the model and adjusting the time bin used to define avalanches (as done with experimental data) are sufficient ingredients to change the apparent exponents of the critical point. Moreover, experimental data is only reproduced within a very narrow range in parameter space around the phase transition.


2004 ◽  
Vol 18 (06) ◽  
pp. 859-866
Author(s):  
DA-YIN HUA ◽  
YUE-JIN ZHU ◽  
YU-QIANG MA

A simple irreversible surface reaction model first introduced by Ziff, Gulari and Barshad has been studied using Monte Carlo simulation. We determine the static critical exponents accurately which are in excellent agreement with those of directed percolation universality class.


2000 ◽  
Vol 10 (01) ◽  
pp. 251-256 ◽  
Author(s):  
FRANCISCO SASTRE ◽  
GABRIEL PÉREZ

The diffusively coupled lattice of odd-symmetric chaotic maps introduced by Miller and Huse undergoes a continuous ordering phase transition, belonging to a universality class close but not identical to that of the two-dimensional Ising model. Here we consider a natural mean-field approach for this model, and find that it does not have a well-defined phase transition. We show how this is due to the coexistence of two attractors in its mean-field description, for the region of interest in the coupling. The behavior of the model in this limit then becomes dependent on initial conditions, as can be seen in direct simulations.


2020 ◽  
Vol 31 (09) ◽  
pp. 2050129
Author(s):  
Yuqi Qing ◽  
Wen-Long You ◽  
Maoxin Liu

We introduce a minesweeper percolation model, in which the system configuration is obtained via an automatic minesweeper process. For a variety of candidate networks with different lattice configurations, our process gives rise to a second-order phase transition. Using Monte Carlo simulation, we identify the critical points implied by giant components. A set of critical exponents are extracted to characterize the nature of the minesweeper percolation transition. The determined universality class shows a clear difference from the traditional percolation transition. A proper mine density of the minesweeper game should be set around the critical density.


1991 ◽  
Vol 06 (30) ◽  
pp. 5447-5466 ◽  
Author(s):  
KEI-ICHI KONDO

The critical behavior of strongly coupled QED with a chiral-invariant four-fermion interaction (gauged Nambu-Jona-Lasinio model) is investigated through the unquenched Schwinger-Dyson equation including the fermion loop effect at the one-loop level. It is shown that the critical exponents satisfy the (hyper)scaling relations as in the quenched case. However, the respective critical exponent takes the classical mean-field value, and consequently unquenched QED belongs to the same universality class as the zero-charge model. On the other hand, it is pointed out that quenched QED violates not only universality but also weak universality, due to continuously varying critical exponents. Furthermore, the renormalization group flow of constant renormalized charge is given. All the results are consistent with triviality of QED and the gauged Nambu-Jona-Lasinio model in the unquenched case.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 1115-1124 ◽  
Author(s):  
P. RODRIGUES ◽  
A. R. JURELO ◽  
F. T. DIAS

We have studied the effect of superconducting fluctuations on the electrical conductivity of granular samples of YbBa 2 Cu 3 O 7 -δ superconductors. Two different polycrystalline samples were prepared for this study. Special attention is taken above T c , where Gaussian and critical regimes are observed. Far from T c , we can observe the regime dominated by Gaussian fluctuations, with exponent approximately [Formula: see text], which is the predicted one for homogeneous 3D fluctuations. Inside the critical region, we have observed two power-law regimes: one of them is consistent with predictions for the 3D-XY universality class, with exponent [Formula: see text]. Below T c , in the approach to the zero resistance state, our results show a power-law behavior with critical exponents s1 = 2.6 ± 0.2 and s2 = 4.2 ± 0.3. We have previously shown that this corresponds to a phase transition from a paracoherent to a coherent state of the granular array.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dietmar Plenz ◽  
Tiago L. Ribeiro ◽  
Stephanie R. Miller ◽  
Patrick A. Kells ◽  
Ali Vakili ◽  
...  

Self-organized criticality (SOC) refers to the ability of complex systems to evolve toward a second-order phase transition at which interactions between system components lead to scale-invariant events that are beneficial for system performance. For the last two decades, considerable experimental evidence has accumulated that the mammalian cortex with its diversity in cell types, interconnectivity, and plasticity might exhibit SOC. Here, we review the experimental findings of isolated, layered cortex preparations to self-organize toward four dynamical motifs presently identified in the intact cortex in vivo: up-states, oscillations, neuronal avalanches, and coherence potentials. During up-states, the synchronization observed for nested theta/gamma oscillations embeds scale-invariant neuronal avalanches, which can be identified by robust power law scaling in avalanche sizes with a slope of −3/2 and a critical branching parameter of 1. This precise dynamical coordination, tracked in the negative transients of the local field potential (nLFP) and spiking activity of pyramidal neurons using two-photon imaging, emerges autonomously in superficial layers of organotypic cortex cultures and acute cortex slices, is homeostatically regulated, exhibits separation of time scales, and reveals unique size vs. quiet time dependencies. A subclass of avalanches, the coherence potentials, exhibits precise maintenance of the time course in propagated local synchrony. Avalanches emerge in superficial layers of the cortex under conditions of strong external drive. The balance of excitation and inhibition (E/I), as well as neuromodulators such as dopamine, establishes powerful control parameters for avalanche dynamics. This rich dynamical repertoire is not observed in dissociated cortex cultures, which lack the differentiation into cortical layers and exhibit a dynamical phenotype expected for a first-order phase transition. The precise interactions between up-states, nested oscillations, and avalanches in superficial layers of the cortex provide compelling evidence for SOC in the brain.


Author(s):  
Roni Muslim ◽  
Rinto Anugraha ◽  
Sholihun Sholihun ◽  
Muhammad Farchani Rosyid

In this work, we study the opinion dynamics of majority-rule model on a complete graph with additional social behavior namely anticonformity. We consider four spins with three-one interaction; three spins persuade the fourth spin in the population. We perform analytical and numerical calculations to find the critical behavior of the system. From both, we obtained the agreement results, e.g. the system undergoes a second-order phase transition and the critical point of the system only depends on the population number. In addition, the critical point decays exponentially as the number population increases. For the infinite population, the obtained critical point is [Formula: see text], which agrees well with that of the previous work. We also obtained the critical exponents [Formula: see text] and [Formula: see text] of the model, thus, the model is in the same universality class with the mean-field Ising.


2020 ◽  
Vol 31 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Roni Muslim ◽  
Rinto Anugraha ◽  
Sholihun Sholihun ◽  
Muhammad Farchani Rosyid

In this work, we study the opinion dynamics of the Sznajd model with anticonformity on a fully-connected network. We consider four agents with two different configurations; three against one (3–1) and two against two (2–2). We consider two different individual behaviors, conformity and anticonformity, and observe the effect on the critical behavior of the model. We analyze the differences between the phase transitions that occur for both agent configurations. We find that both agent configurations have a different critical point. The critical point of the 3–1 agent is smaller than that of the 2–2 agent configuration. From the simulation and analytical result, we find that the critical point for the 3–1 occurs at [Formula: see text], and for the 2–2, at [Formula: see text]. From the social viewpoint, the consensus process in a population is faster with a larger influencer in the same number of small group of the population. In addition, we find the critical exponents for both configurations are the same, that are [Formula: see text] and [Formula: see text]. Our results suggest that both models are identical and in the mean-field Ising universality class.


Sign in / Sign up

Export Citation Format

Share Document