scholarly journals Rational reprogramming of cellular states by combinatorial perturbation

2018 ◽  
Author(s):  
Jialei Duan ◽  
Boxun Li ◽  
Minoti Bhakta ◽  
Shiqi Xie ◽  
Pei Zhou ◽  
...  

AbstractEctopic expression of transcription factors (TFs) can reprogram cell state. However, due to the large combinatorial space of possible TF cocktails, it remains difficult to identify TFs that reprogram specific cell types. Here, we develop Reprogram-Seq to experimentally screen thousands of TF cocktails for reprogramming performance. Reprogram-Seq leverages organ-specific cell atlas data with single-cell perturbation and computational analysis to predict, evaluate, and optimize TF combinations that reprogram a cell type of interest. Focusing on the cardiac system, we perform Reprogram-Seq on MEFs using an undirected library of 48 cardiac factors and separately on a directed library of 10 epicardial-related TFs. We identify a novel combination of 3 TFs which efficiently reprogram MEFs to epicardial-like cells that are transcriptionally, molecularly, morphologically, and functionally similar to primary epicardial cells. Reprogram-Seq holds promise to accelerate the generation of specific cell types for regenerative medicine.

Science ◽  
2019 ◽  
Vol 366 (6471) ◽  
pp. 1384-1389 ◽  
Author(s):  
Donghoon Lee ◽  
Maiko Kume ◽  
Timothy E. Holy

Neural circuit analysis relies on having molecular markers for specific cell types. However, for a cell type identified only by its circuit function, the process of identifying markers remains laborious. We developed physiological optical tagging sequencing (PhOTseq), a technique for tagging and expression profiling of cells on the basis of their functional properties. PhOTseq was capable of selecting rare cell types and enriching them by nearly 100-fold. We applied PhOTseq to the challenge of mapping receptor-ligand pairings among pheromone-sensing neurons in mice. Together with in vivo ectopic expression of vomeronasal chemoreceptors, PhOTseq identified the complete combinatorial receptor code for a specific set of ligands.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Kevin Furlong ◽  
Scott B. Biering ◽  
Jayoung Choi ◽  
Craig B. Wilen ◽  
Robert C. Orchard ◽  
...  

ABSTRACT Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC′ loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry. IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.


2019 ◽  
Author(s):  
Donghoon Lee ◽  
Maiko Kume ◽  
Timothy E Holy

Neural circuit analysis relies on having molecular markers for specific cell types. However, for a cell type identified only by its circuit function, the process of identifying markers remains laborious. Here, we report physiological optical tagging sequencing (PhOTseq), a technique for tagging and expression-profiling cells based on their functional properties. We demonstrate that PhOTseq is capable of selecting rare cell types and enriching them by nearly one hundred-fold. We applied PhOTseq to the challenge of mapping receptor-ligand pairings among vomeronasal pheromone-sensing neurons in mice. Together with in vivo ectopic expression of vomeronasal chemoreceptors, PhOTseq identified the complete combinatorial receptor code for a specific set of ligands, and revealed that the primary sequence of a chemoreceptor was an unexpectedly strong predictor of functional similarity.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Ben Van Handel ◽  
Tonis Org ◽  
Amelie Montel-Hagen ◽  
Haruko Nakano ◽  
Atsushi Nakano ◽  
...  

Identification of precursors with the capacity to generate cardiomyocytes is critical for advancing cardiac regenerative medicine. By analyzing knockout embryos for the bHLH factor Scl, we demonstrated that endothelial cells in hematopoietic tissues and the heart possess latent cardiomyogenic capacity. Furthermore, analysis of tamoxifen-inducible Rosa26-Cre ERT2 Scl fl/fl embryos suggested that the time window during which Scl is required for cardiac repression extends later in the heart versus the yolk sac. However, the cell types in which Scl acts remained elusive. We then deleted Scl in a cell-type specific manner in early mesoderm using Mesp1-Cre and in endothelial cells using Tie2-Cre. Lineage tracing in Mesp1-Cre Rosa26-YFP embryos demonstrated that at E9.5, a large majority of hematopoietic and endothelial cells in the yolk sac and heart were labeled. Moreover, deletion of Scl in Mesp1-Cre Scl fl/fl embryos phenocopied the germline knockout, essentially abrogating hematopoiesis and promoting the emergence of CD31 + PDGFRα + cardiomyogenic precursors and ectopic expression of the cardiomyocyte genes Myl7 and Tnnt2 in yolk sac vasculature. In contrast, deletion of Scl after endothelium had been specified in Tie2-Cre Scl fl/fl embryos did not grossly affect yolk sac hematopoiesis, nor did it induce ectopic cardiomyogenesis in hemogenic tissues. However, endothelial-derived cells in the hearts of Tie2-Cre Scl fl/fl embryos evidenced profound expansion of CD31 + PDGFRα + cardiogenic precursors at E11.5 and E13.5, as well as displayed dramatic upregulation of Myl7 and Tnnt2 , showing that the requirement for Scl to repress the cardiomyogenic program extends longer in endothelial derivatives in the heart than in the yolk sac. These data demonstrate that endocardial-derived cells in the heart retain latent cardiomyogenic potential until mid-gestation and nominate Scl as a critical regulator of endocardial fate.


Author(s):  
G. Rowden ◽  
M. G. Lewis ◽  
T. M. Phillips

Langerhans cells of mammalian stratified squamous epithelial have proven to be an enigma since their discovery in 1868. These dendritic suprabasal cells have been considered as related to melanocytes either as effete cells, or as post divisional products. Although grafting experiments seemed to demonstrate the independence of the cell types, much confusion still exists. The presence in the epidermis of a cell type with morphological features seemingly shared by melanocytes and Langerhans cells has been especially troublesome. This so called "indeterminate", or " -dendritic cell" lacks both Langerhans cells granules and melanosomes, yet it is clearly not a keratinocyte. Suggestions have been made that it is related to either Langerhans cells or melanocyte. Recent studies have unequivocally demonstrated that Langerhans cells are independent cells with immune function. They display Fc and C3 receptors on their surface as well as la (immune region associated) antigens.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


Author(s):  
Hee-Dae Kim ◽  
Jing Wei ◽  
Tanessa Call ◽  
Nicole Teru Quintus ◽  
Alexander J. Summers ◽  
...  

AbstractDepression is the leading cause of disability and produces enormous health and economic burdens. Current treatment approaches for depression are largely ineffective and leave more than 50% of patients symptomatic, mainly because of non-selective and broad action of antidepressants. Thus, there is an urgent need to design and develop novel therapeutics to treat depression. Given the heterogeneity and complexity of the brain, identification of molecular mechanisms within specific cell-types responsible for producing depression-like behaviors will advance development of therapies. In the reward circuitry, the nucleus accumbens (NAc) is a key brain region of depression pathophysiology, possibly based on differential activity of D1- or D2- medium spiny neurons (MSNs). Here we report a circuit- and cell-type specific molecular target for depression, Shisa6, recently defined as an AMPAR component, which is increased only in D1-MSNs in the NAc of susceptible mice. Using the Ribotag approach, we dissected the transcriptional profile of D1- and D2-MSNs by RNA sequencing following a mouse model of depression, chronic social defeat stress (CSDS). Bioinformatic analyses identified cell-type specific genes that may contribute to the pathogenesis of depression, including Shisa6. We found selective optogenetic activation of the ventral tegmental area (VTA) to NAc circuit increases Shisa6 expression in D1-MSNs. Shisa6 is specifically located in excitatory synapses of D1-MSNs and increases excitability of neurons, which promotes anxiety- and depression-like behaviors in mice. Cell-type and circuit-specific action of Shisa6, which directly modulates excitatory synapses that convey aversive information, identifies the protein as a potential rapid-antidepressant target for aberrant circuit function in depression.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanyu Zhang ◽  
Ruoyi Cai ◽  
James Dai ◽  
Wei Sun

AbstractWe introduce a new computational method named EMeth to estimate cell type proportions using DNA methylation data. EMeth is a reference-based method that requires cell type-specific DNA methylation data from relevant cell types. EMeth improves on the existing reference-based methods by detecting the CpGs whose DNA methylation are inconsistent with the deconvolution model and reducing their contributions to cell type decomposition. Another novel feature of EMeth is that it allows a cell type with known proportions but unknown reference and estimates its methylation. This is motivated by the case of studying methylation in tumor cells while bulk tumor samples include tumor cells as well as other cell types such as infiltrating immune cells, and tumor cell proportion can be estimated by copy number data. We demonstrate that EMeth delivers more accurate estimates of cell type proportions than several other methods using simulated data and in silico mixtures. Applications in cancer studies show that the proportions of T regulatory cells estimated by DNA methylation have expected associations with mutation load and survival time, while the estimates from gene expression miss such associations.


Author(s):  
Samina Momtaz ◽  
Belen Molina ◽  
Luwanika Mlera ◽  
Felicia Goodrum ◽  
Jean M. Wilson

AbstractHuman cytomegalovirus (HCMV), while highly restricted for the human species, infects an unlimited array of cell types in the host. Patterns of infection are dictated by the cell type infected, but cell type-specific factors and how they impact tropism for specific cell types is poorly understood. Previous studies in primary endothelial cells showed that HCMV infection induces large multivesicular-like bodies that incorporate viral products including dense bodies and virions. Here we define the nature of these large vesicles using a recombinant virus where UL32, encoding the pp150 tegument protein, is fused in frame with green fluorescent protein (GFP, TB40/E-UL32-GFP). Cells were fixed and labeled with antibodies against subcellular compartment markers and imaged using confocal and super-resolution microscopy. In fibroblasts, UL32-GFP-positive vesicles were marked with classical markers of MVBs, including CD63 and lysobisphosphatidic acid (LBPA), both classical MVB markers, as well as the clathrin and LAMP1. Unexpectedly, UL32-GFP-positive vesicles in endothelial cells were not labeled by CD63, and LBPA was completely lost from infected cells. We defined these UL32-positive vesicles in endothelial cells using markers for the cis-Golgi (GM130), lysosome (LAMP1), and autophagy (LC3B). These findings suggest that virus-containing MVBs in fibroblasts are derived from the canonical endocytic pathway and takeover classical exosomal release pathway. Virus containing MVBs in HMVECs are derived from the early biosynthetic pathway and exploit a less characterized early Golgi-LAMP1-associated non-canonical secretory autophagy pathway. These results reveal striking cell-type specific membrane trafficking differences in host pathways that are exploited by HCMV.ImportanceHuman cytomegalovirus (HCMV) is a herpesvirus that, like all herpesvirus, that establishes a life long infection. HCMV remains a significant cause of morbidity and mortality in the immunocompromised and HCMV seropositivity is associated with increased risk vascular disease. HCMV infects many cells in the human and the biology underlying the different patterns of infection in different cell types is poorly understood. Endothelial cells are important target of infection that contribute to hematogenous spread of the virus to tissues. Here we define striking differences in the biogenesis of large vesicles that incorporate virions in fibroblasts and endothelial cells. In fibroblasts, HCMV is incorporated into canonical MVBs derived from an endocytic pathway, whereas HCMV matures through vesicles derived from the biosynthetic pathway in endothelial cells. This work defines basic biological differences between these cell types that may impact the outcome of infection.


2020 ◽  
Author(s):  
Manuela Wuelling ◽  
Christoph Neu ◽  
Andrea M. Thiesen ◽  
Simo Kitanovski ◽  
Yingying Cao ◽  
...  

AbstractEpigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy.Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with a shift from low to high H3K27ac decoration. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, while HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions.


Sign in / Sign up

Export Citation Format

Share Document