scholarly journals High-throughput microfluidic characterization of erythrocyte shape and mechanical variability

2018 ◽  
Author(s):  
Felix Reichel ◽  
Johannes Mauer ◽  
Ahmad Ahsan Nawaz ◽  
Gerhard Gompper ◽  
Jochen Guck ◽  
...  

The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study, which systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions, but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.Significance StatementThe ability to change shape is crucial for the proper functioning of red blood cells under harsh conditions in the microvasculature, since their shapes strongly affect the flow behavior of whole blood. Our results from simulations and systematic experiments reveal the shapes and dynamics of red blood cells for different flow conditions and channel dimensions, generally in good agreement. However, in the experiments, cells do not exhibit a single well-defined shape for fixed flow conditions. We show that this distribution of shapes can be attributed to the variability in mechanical properties of red blood cells.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ewa Guzniczak ◽  
Maryam Mohammad Zadeh ◽  
Fiona Dempsey ◽  
Melanie Jimenez ◽  
Henry Bock ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (24) ◽  
pp. 4258-4267 ◽  
Author(s):  
Dmitry A. Fedosov ◽  
Matti Peltomäki ◽  
Gerhard Gompper

The behavior of red blood cells (RBCs) in microvessels plays an important role in blood flow resistance and in the cell partitioning within a microcirculatory network. We employ mesoscopic hydrodynamic simulations to study the behavior and deformation of single RBCs in microchannels yielding the construction of diagrams of RBC shapes for a wide range of flow conditions.


Soft Matter ◽  
2021 ◽  
Author(s):  
Andreu Fernandez Gallen ◽  
Mario Castro ◽  
Aurora Hernandez-Machado

The study of the mechanical properties of red blood cells improve the diagnosis of some blood-related diseases. Some existing numerical methods have simulated successfully the coupling between the fluid and...


2021 ◽  
pp. 1-10
Author(s):  
Rui Zhong ◽  
Dingding Han ◽  
Xiaodong Wu ◽  
Hong Wang ◽  
Wanjing Li ◽  
...  

Background: The hypoxic environment stimulates the human body to increase the levels of hemoglobin (HGB) and hematocrit and the number of red blood cells. Such enhancements have individual differences, leading to a wide range of HGB in Tibetans’ whole blood (WB). Study Design: WB of male Tibetans was divided into 3 groups according to different HGB (i.e., A: >120 but ≤185 g/L, B: >185 but ≤210 g/L, and C: >210 g/L). Suspended red blood cells (SRBC) processed by collected WB and stored in standard conditions were examined aseptically on days 1, 14, 21, and 35 after storage. The routine biochemical indexes, deformability, cell morphology, and membrane proteins were tested. Results: Mean corpuscular volume, adenosine triphosphate, pH, and deformability were not different in group A vs. those in storage (p > 0.05). The increased rate of irreversible morphology of red blood cells was different among the 3 groups, but there was no difference in the percentage of red blood cells with an irreversible morphology after 35 days of storage. Group C performed better in terms of osmotic fragility and showed a lower rigid index than group A. Furthermore, SDS-PAGE revealed similar cross-linking degrees of cell membrane protein but the band 3 protein of group C seemed to experience weaker clustering than that of group A as detected by Western Blot analysis after 35 days of storage. Conclusions: There was no difference in deformability or morphological changes in the 3 groups over the 35 days of storage. High HGB levels of plateau SRBC did not accelerate the RBC change from a biconcave disc into a spherical shape and it did not cause a reduction in deformability during 35 days of preservation in bank conditions.


Cryobiology ◽  
2020 ◽  
Author(s):  
Brett R. Janis ◽  
Mariah C. Priddy ◽  
Meghan R. Otto ◽  
Jonathan A. Kopechek ◽  
Michael A. Menze

Lab on a Chip ◽  
2021 ◽  
Author(s):  
YUHAO QIANG ◽  
Jia Liu ◽  
Ming Dao ◽  
E Du

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that...


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Frederik Barbarino ◽  
Lucas Wäschenbach ◽  
Virginia Cavalho-Lemos ◽  
Melissa Dillenberger ◽  
Katja Becker ◽  
...  

AbstractThe mechanical properties of red blood cells (RBCs) are fundamental for their physiological role as gas transporters. RBC flexibility and elasticity allow them to survive the hemodynamic changes in the different regions of the vascular tree, to dynamically contribute to the flow thereby decreasing vascular resistance, and to deform during the passage through narrower vessels. RBC mechanoproperties are conferred mainly by the structural characteristics of their cytoskeleton, which consists predominantly of a spectrin scaffold connected to the membrane via nodes of actin, ankyrin and adducin. Changes in redox state and treatment with thiol-targeting molecules decrease the deformability of RBCs and affect the structure and stability of the spectrin cytoskeleton, indicating that the spectrin cytoskeleton may contain redox switches. In this perspective review, we revise current knowledge about the structural and functional characterization of spectrin cysteine redox switches and discuss the current lines of research aiming to understand the role of redox regulation on RBC mechanical properties. These studies may provide novel functional targets to modulate RBC function, blood viscosity and flow, and tissue perfusion in disease conditions.


2016 ◽  
Vol 100 ◽  
pp. S193
Author(s):  
Joo-Yeun Oh ◽  
Xin Xu ◽  
Kristopher Genschmer ◽  
Ming Zhong ◽  
Jindong Li ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document