scholarly journals Forecasting when cells die during antibiotic exposure using stochastic gene expression

2018 ◽  
Author(s):  
Nicholas A. Rossi ◽  
Imane El Meouche ◽  
Mary J. Dunlop

AbstractAntibiotic killing does not occur at a single, precise time for all cells within a population. Variability in time to death can be caused by stochastic expression of genes, resulting in differences in endogenous stress-resistance levels between individual cells in a population. This variability can be part of a bet-hedging strategy where cells leverage noise to ensure a subset of the population can tolerate the drug, while decreasing the overall cost of expressing resistance genes. We asked whether single-cell differences in gene expression prior to antibiotic addition were related to cell survival times after antibiotic exposure for a range of genes of diverse function. We quantified the time to death of single cells under antibiotic exposure in combination with expression of reporters. For some reporters, the time to cell death had a strong relationship with the initial expression level of the genes. Reporters that could forecast cell fate included stress response genes, but also genes involved in a variety of other cellular processes like metabolism. Our results highlight the single-cell level non-uniformity of antibiotic killing and also provide examples of key genes where cell-to-cell variation in expression prior to antibiotic exposure is strongly linked to extended durations of antibiotic survival.

Open Biology ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 170030 ◽  
Author(s):  
Peng Dong ◽  
Zhe Liu

Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two ‘seemingly contradictory’ mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.


Author(s):  
Jérémie Breda ◽  
Mihaela Zavolan ◽  
Erik van Nimwegen

AbstractIn spite of a large investment in the development of methodologies for analysis of single-cell RNA-seq data, there is still little agreement on how to best normalize such data, i.e. how to quantify gene expression states of single cells from such data. Starting from a few basic requirements such as that inferred expression states should correct for both intrinsic biological fluctuations and measurement noise, and that changes in expression state should be measured in terms of fold-changes rather than changes in absolute levels, we here derive a unique Bayesian procedure for normalizing single-cell RNA-seq data from first principles. Our implementation of this normalization procedure, called Sanity (SAmpling Noise corrected Inference of Transcription activitY), estimates log expression values and associated errors bars directly from raw UMI counts without any tunable parameters.Comparison of Sanity with other recent normalization methods on a selection of scRNA-seq datasets shows that Sanity outperforms other methods on basic downstream processing tasks such as clustering cells into subtypes and identification of differentially expressed genes. More importantly, we show that all other normalization methods present severely distorted pictures of the data. By failing to account for biological and technical Poisson noise, many methods systematically predict the lowest expressed genes to be most variable in expression, whereas in reality these genes provide least evidence of true biological variability. In addition, by confounding noise removal with lower-dimensional representation of the data, many methods introduce strong spurious correlations of expression levels with the total UMI count of each cell as well as spurious co-expression of genes.


2020 ◽  
Author(s):  
T. Lohoff ◽  
S. Ghazanfar ◽  
A. Missarova ◽  
N. Koulena ◽  
N. Pierson ◽  
...  

AbstractTranscriptional and epigenetic profiling of single-cells has advanced our knowledge of the molecular bases of gastrulation and early organogenesis. However, current approaches rely on dissociating cells from tissues, thereby losing the crucial spatial context that is necessary for understanding cell and tissue interactions during development. Here, we apply an image-based single-cell transcriptomics method, seqFISH, to simultaneously and precisely detect mRNA molecules for 387 selected target genes in 8-12 somite stage mouse embryo tissue sections. By integrating spatial context and highly multiplexed transcriptional measurements with two single-cell transcriptome atlases we accurately characterize cell types across the embryo and demonstrate how spatially-resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary and the developing gut tube. Our spatial atlas uncovers axes of resolution that are not apparent from single-cell RNA sequencing data – for example, in the gut tube we observe early dorsal-ventral separation of esophageal and tracheal progenitor populations. In sum, by computationally integrating high-resolution spatially-resolved gene expression maps with single-cell genomics data, we provide a powerful new approach for studying how and when cell fate decisions are made during early mammalian development.


2018 ◽  
Author(s):  
Luyi Tian ◽  
Jaring Schreuder ◽  
Daniela Zalcenstein ◽  
Jessica Tran ◽  
Nikolce Kocovski ◽  
...  

AbstractConventional single cell RNA-seq methods are destructive, such that a given cell cannot also then be tested for fate and function, without a time machine. Here, we develop a clonal method SIS-seq, whereby single cells are allowed to divide, and progeny cells are assayed separately in SISter conditions; some for fate, others by RNA-seq. By cross-correlating progenitor gene expression with mature cell fate within a clone, and doing this for many clones, we can identify the earliest gene expression signatures of dendritic cell subset development. SIS-seq could be used to study other populations harboring clonal heterogeneity, including stem, reprogrammed and cancer cells to reveal the transcriptional origins of fate decisions.


2021 ◽  
Author(s):  
Joshua Burton ◽  
Cerys S Manning ◽  
Magnus Rattray ◽  
Nancy Papalopulu ◽  
Jochen Kursawe

Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have been associated with cell fate changes in multiple contexts, including development and cancer. Single cell live imaging of protein expression with endogenous reporters is widely used to observe such gene expression dynamics. However, the experimental investigation of regulatory mechanisms underlying the observed dynamics is challenging, since these mechanisms include complex interactions of multiple processes, including transcription, translation, and protein degradation. Here, we present a Bayesian method to infer kinetic parameters of oscillatory gene expression regulation using an auto-negative feedback motif with delay. Specifically, we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted Langevin algorithm to identify posterior probability distributions. Our method can be applied to time series data on gene expression from single cells and is able to infer multiple parameters simultaneously. We apply it to published data on murine neural progenitor cells and show that it outperforms alternative methods. We further analyse how parameter uncertainty depends on the duration and time resolution of an imaging experiment, to make experimental design recommendations. This work demonstrates the utility of parameter inference on time course data from single cells and enables new studies on cell fate changes and population heterogeneity.


2017 ◽  
Author(s):  
Britta Werthmann ◽  
Wolfgang Marwan

AbstractThe developmental switch to sporulation inPhysarum polycephalumis a phytochrome-mediated far-red light-induced cell fate decision that synchronously encompasses the entire multinucleate plasmodial cell and is associated with extensive reprogramming of the transcriptome. By repeatedly taking samples of single cells after delivery of a light stimulus pulse, we analysed differential gene expression in two mutant strains and in a heterokaryon of the two strains all of which display a different propensity for making the cell fate decision. Multidimensional scaling of the gene expression data revealed individually different single cell trajectories eventually leading to sporulation. Characterization of the trajectories as walks through states of gene expression discretized by hierarchical clustering allowed the reconstruction of Petri nets that model and predict the observed behavior. Structural analyses of the Petri nets indicated stimulus- and genotype-dependence of both, single cell trajectories and of the quasipotential landscape through which these trajectories are taken. The Petri net-based approach to the analysis and decomposition of complex cellular responses and of complex mutant phenotypes may provide a scaffold for the data-driven reconstruction of causal molecular mechanisms that shape the topology of the quasipotential landscape.


2021 ◽  
Vol 18 (182) ◽  
Author(s):  
Joshua Burton ◽  
Cerys S. Manning ◽  
Magnus Rattray ◽  
Nancy Papalopulu ◽  
Jochen Kursawe

Gene expression dynamics, such as stochastic oscillations and aperiodic fluctuations, have been associated with cell fate changes in multiple contexts, including development and cancer. Single cell live imaging of protein expression with endogenous reporters is widely used to observe such gene expression dynamics. However, the experimental investigation of regulatory mechanisms underlying the observed dynamics is challenging, since these mechanisms include complex interactions of multiple processes, including transcription, translation and protein degradation. Here, we present a Bayesian method to infer kinetic parameters of oscillatory gene expression regulation using an auto-negative feedback motif with delay. Specifically, we use a delay-adapted nonlinear Kalman filter within a Metropolis-adjusted Langevin algorithm to identify posterior probability distributions. Our method can be applied to time-series data on gene expression from single cells and is able to infer multiple parameters simultaneously. We apply it to published data on murine neural progenitor cells and show that it outperforms alternative methods. We further analyse how parameter uncertainty depends on the duration and time resolution of an imaging experiment, to make experimental design recommendations. This work demonstrates the utility of parameter inference on time course data from single cells and enables new studies on cell fate changes and population heterogeneity.


2019 ◽  
Vol 374 (1786) ◽  
pp. 20190098 ◽  
Author(s):  
Chuan Ku ◽  
Arnau Sebé-Pedrós

Understanding the diversity and evolution of eukaryotic microorganisms remains one of the major challenges of modern biology. In recent years, we have advanced in the discovery and phylogenetic placement of new eukaryotic species and lineages, which in turn completely transformed our view on the eukaryotic tree of life. But we remain ignorant of the life cycles, physiology and cellular states of most of these microbial eukaryotes, as well as of their interactions with other organisms. Here, we discuss how high-throughput genome-wide gene expression analysis of eukaryotic single cells can shed light on protist biology. First, we review different single-cell transcriptomics methodologies with particular focus on microbial eukaryote applications. Then, we discuss single-cell gene expression analysis of protists in culture and what can be learnt from these approaches. Finally, we envision the application of single-cell transcriptomics to protist communities to interrogate not only community components, but also the gene expression signatures of distinct cellular and physiological states, as well as the transcriptional dynamics of interspecific interactions. Overall, we argue that single-cell transcriptomics can significantly contribute to our understanding of the biology of microbial eukaryotes. This article is part of a discussion meeting issue ‘Single cell ecology’.


2010 ◽  
Vol 18 (4) ◽  
pp. 675-685 ◽  
Author(s):  
Guoji Guo ◽  
Mikael Huss ◽  
Guo Qing Tong ◽  
Chaoyang Wang ◽  
Li Li Sun ◽  
...  

2021 ◽  
Author(s):  
Pengcheng Ma ◽  
Xingyan Liu ◽  
Huimin Liu ◽  
Zaoxu Xu ◽  
Xiangning Ding ◽  
...  

Abstract Vertebrate evolution was accompanied with two rounds of whole genome duplication followed by functional divergence in terms of regulatory circuits and gene expression patterns. As a basal and slow-evolving chordate species, amphioxus is an ideal paradigm for exploring the origin and evolution of vertebrates. Single cell sequencing has been widely employed to construct the developmental cell atlas of several key species of vertebrates (human, mouse, zebrafish and frog) and tunicate (sea squirts). Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) for different stages of amphioxus (covering embryogenesis and adult tissues). With the datasets generated we constructed the developmental tree for amphioxus cell fate commitment and lineage specification, and revealed the underlying key regulators and genetic regulatory networks. The generated data were integrated into an online platform, AmphioxusAtlas, for public access at http://120.79.46.200:81/AmphioxusAtlas.


Sign in / Sign up

Export Citation Format

Share Document