scholarly journals Coding advantage of grid cell orientation under noisy conditions

2018 ◽  
Author(s):  
Dong Chen ◽  
Kai-Jia Sun ◽  
Liang Wang ◽  
Zhanjun Zhang ◽  
Ying-Cheng Lai ◽  
...  

Grid cells constitute a crucial component of the “GPS” in the mammalian brain. Recent experiments revealed that grid cell activity is anchored to environmental boundaries. More specifically, these results revealed a slight yet consistent offset of 8 degrees relative to boundaries of a square environment. The causes and possible functional roles of this orientation are still unclear. Here we propose that this phenomenon maximizes the spatial information conveyed by grid cells. Computer simulations of the grid cell network reveal that the universal grid orientation at 8 degrees optimizes spatial coding specifically in the presence of noise. Our model also predicts the minimum number of grid cells in each module. In addition, analytical results and a dynamical reinforcement learning model reveal the mechanism underlying the noise-induced orientation preference at 8 degrees. Together, these results suggest that the experimentally observed common orientation of grid cells serves to maximize spatial information in the presence of noise.

2017 ◽  
Author(s):  
Sean G. Trettel ◽  
John B. Trimper ◽  
Ernie Hwaun ◽  
Ila R. Fiete ◽  
Laura Lee Colgin

ABSTRACTContinuous attractor network models of grid formation posit that recurrent connectivity between grid cells controls their patterns of co-activation. Grid cells from a common module exhibit stable offsets in their periodic spatial tuning curves across environments, which may reflect recurrent connectivity or correlated sensory inputs. Here we explore whether cell-cell relationships predicted by attractor models persist during sleep states in which spatially informative sensory inputs are absent. We recorded ensembles of grid cells in superficial layers of medial entorhinal cortex during active exploratory behaviors and overnight sleep. Per pair and collectively, we found preserved patterns of spike-time correlations across waking, REM, and non-REM sleep, which reflected the spatial tuning offsets between these cells during active exploration. The preservation of cell-cell relationships across states was not explained by theta oscillations or CA1 activity. These results suggest that recurrent connectivity within the grid cell network drives grid cell activity across behavioral states.


2018 ◽  
Author(s):  
Sophie Rosay ◽  
Simon N. Weber ◽  
Marcello Mulas

A neuron’s firing correlates are defined as the features of the external world to which its activity is correlated. In many parts of the brain, neurons have quite simple such firing correlates. A striking example are grid cells in the rodent medial entorhinal cortex: their activity correlates with the animal’s position in space, defining ‘grid fields’ arranged with a remarkable periodicity. Here, we show that the organization and evolution of grid fields relate very simply to physical space. To do so, we use an effective model and consider grid fields as point objects (particles) moving around in space under the influence of forces. We are able to reproduce most observations on the geometry of grid patterns. This particle-like behavior is particularly salient in a recent experiment where two separate grid patterns merge. We discuss pattern formation in the light of known results from physics of two-dimensional colloidal systems. Finally, we draw the relationship between our ‘macroscopic’ model for grid fields and existing ‘microscopic’ models of grid cell activity and discuss how a description at the level of grid fields allows to put constraints on the underlying grid cell network.


2021 ◽  
Author(s):  
Johnson Ying ◽  
Alexandra T. Keinath ◽  
Raphael Lavoie ◽  
Erika Vigneault ◽  
Salah El Mestikawy ◽  
...  

AbstractEarly-onset familial Alzheimer’s disease (AD) is marked by an aggressive buildup of amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in a transgenic mouse model of familial AD that over-expresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aβ-mediated damage to the entorhinal-hippocampal circuit results in an early impairment of the entorhinal grid cell network.


2017 ◽  
Author(s):  
Richard J. Gardner ◽  
Li Lu ◽  
Tanja Wernle ◽  
May-Britt Moser ◽  
Edvard I. Moser

AbstractThe network of grid cells in the medial entorhinal cortex forms a fixed reference frame for mapping physical space. The mechanistic origin of the grid representation is unknown, but continuous attractor network (CAN) models explain multiple fundamental features of grid-cell activity. An untested prediction of CAN grid models is that the grid-cell network should exhibit an activity correlation structure that transcends behavioural or brain states. By recording from MEC cell ensembles during navigation and sleep, we found that spatial phase offsets of grid cells predict arousal-state-independent spike rate correlations. Similarly, state-invariant correlations between conjunctive grid-head-direction and pure head-direction cells were predicted by their head-direction tuning offsets. Spike rates of grid cells were only weakly correlated across modules, and module scale relationships disintegrated during slow-save sleep, suggesting that modules function as independent attractor networks. Collectively, our observations suggest that network states in MEC are expressed universally across brain and behaviour states.


2014 ◽  
Vol 369 (1635) ◽  
pp. 20120511 ◽  
Author(s):  
Edvard I. Moser ◽  
May-Britt Moser ◽  
Yasser Roudi

One of the major breakthroughs in neuroscience is the emerging understanding of how signals from the external environment are extracted and represented in the primary sensory cortices of the mammalian brain. The operational principles of the rest of the cortex, however, have essentially remained in the dark. The discovery of grid cells, and their functional organization, opens the door to some of the first insights into the workings of the association cortices, at a stage of neural processing where firing properties are shaped not primarily by the nature of incoming sensory signals but rather by internal self-organizing principles. Grid cells are place-modulated neurons whose firing locations define a periodic triangular array overlaid on the entire space available to a moving animal. The unclouded firing pattern of these cells is rare within the association cortices. In this paper, we shall review recent advances in our understanding of the mechanisms of grid-cell formation which suggest that the pattern originates by competitive network interactions, and we shall relate these ideas to new insights regarding the organization of grid cells into functionally segregated modules.


2019 ◽  
Author(s):  
Davide Spalla ◽  
Alexis Dubreuil ◽  
Sophie Rosay ◽  
Remi Monasson ◽  
Alessandro Treves

The way grid cells represent space in the rodent brain has been a striking discovery, with theoret-ical implications still unclear. Differently from hippocampal place cells, which are known to encode multiple, environment-dependent spatial maps, grid cells have been widely believed to encode space through a single low dimensional manifold, in which coactivity relations between different neurons are preserved when the environment is changed. Does it have to be so? Here, we compute - using two alternative mathematical models - the storage capacity of a population of grid-like units, em-bedded in a continuous attractor neural network, for multiple spatial maps. We show that distinct representations of multiple environments can coexist, as existing models for grid cells have the po-tential to express several sets of hexagonal grid patterns, challenging the view of a universal grid map. This suggests that a population of grid cells can encode multiple non-congruent metric rela-tionships, a feature that could in principle allow a grid-like code to represent environments with a variety of different geometries and possibly conceptual and cognitive spaces, which may be expected to entail such context-dependent metric relationships.


2020 ◽  
Vol 123 (4) ◽  
pp. 1392-1406 ◽  
Author(s):  
Juan Ignacio Sanguinetti-Scheck ◽  
Michael Brecht

The home is a unique location in the life of humans and animals. In rats, home presents itself as a multicompartmental space that involves integrating navigation through subspaces. Here we embedded the laboratory rat’s home cage in the arena, while recording neurons in the animal’s parasubiculum and medial entorhinal cortex, two brain areas encoding the animal’s location and head direction. We found that head direction signals were unaffected by home cage presence or translocation. Head direction cells remain globally stable and have similar properties inside and outside the embedded home. We did not observe egocentric bearing encoding of the home cage. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated toward the home. These effects appeared to be geometrical in nature rather than a home-specific distortion and were not dependent on explicit behavioral use of the home cage during a hoarding task. Our work suggests that medial entorhinal cortex and parasubiculum do not remap after embedding the home, but local changes in grid cell activity overrepresent the embedded space location and might contribute to navigation in complex environments. NEW & NOTEWORTHY Neural findings in the field of spatial navigation come mostly from an abstract approach that separates the animal from even a minimally biological context. In this article we embed the home cage of the rat in the environment to address some of the complexities of natural navigation. We find no explicit home cage representation. While both head direction cells and grid cells remain globally stable, we find that embedded spaces locally distort grid cells.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Niklas Wilming ◽  
Peter König ◽  
Seth König ◽  
Elizabeth A Buffalo

Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Haggai Agmon ◽  
Yoram Burak

The representation of position in the mammalian brain is distributed across multiple neural populations. Grid cell modules in the medial entorhinal cortex (MEC) express activity patterns that span a low-dimensional manifold which remains stable across different environments. In contrast, the activity patterns of hippocampal place cells span distinct low-dimensional manifolds in different environments. It is unknown how these multiple representations of position are coordinated. Here, we develop a theory of joint attractor dynamics in the hippocampus and the MEC. We show that the system exhibits a coordinated, joint representation of position across multiple environments, consistent with global remapping in place cells and grid cells. In addition, our model accounts for recent experimental observations that lack a mechanistic explanation: variability in the firing rate of single grid cells across firing fields, and artificial remapping of place cells under depolarization, but not under hyperpolarization, of layer II stellate cells of the MEC.


2018 ◽  
Author(s):  
Simon N. Weber ◽  
Henning Sprekeler

ABSTRACTGrid cells have attracted broad attention because of their highly symmetric hexagonal firing patterns. Recently, research has shifted its focus from the global symmetry of grid cell activity to local distortions both in space and time, such as drifts in orientation, local defects of the hexagonal symmetry, and the decay and reappearance of grid patterns after changes in lighting condition. Here, we introduce a method that allows to visualize and quantify such local distortions, by assigning both a local grid score and a local orientation to each individual spike of a neuronal recording. The score is inspired by a standard measure from crystallography, which has been introduced to quantify local order in crystals. By averaging over spikes recorded within arbitrary regions or time periods, we can quantify local variations in symmetry and orientation of firing patterns in both space and time.


Sign in / Sign up

Export Citation Format

Share Document