scholarly journals The symmetrical pattern of base-pair substitutions rates across the chromosome in Escherichia coli has multiple causes

2019 ◽  
Author(s):  
Brittany A. Niccum ◽  
Heewook Lee ◽  
Wazim MohammedIsmail ◽  
Haixu Tang ◽  
Patricia L. Foster

AbstractMutation accumulation experiments followed by whole-genome sequencing have revealed that for several bacterial species the rate of base-pair substitutions is not constant across the chromosome but varies in a wave-like pattern symmetrical about the origin of replication. The experiments reported here demonstrate that in Escherichia coli several interacting factors determine the wave. Perturbing replication timing, progression, or the structure of the terminus disrupts the pattern. Biases in error-correction by proofreading and mismatch repair are major factors. The activities of the nucleoid binding proteins, HU and Fis, are important, suggesting that mutation rates increase when highly structured DNA is replicated. These factors should apply to most bacterial, and possibly eukaryotic, genomes, and imply that different areas of the genome evolve at different rates.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Brittany A. Niccum ◽  
Heewook Lee ◽  
Wazim MohammedIsmail ◽  
Haixu Tang ◽  
Patricia L. Foster

ABSTRACTMutation accumulation experiments followed by whole-genome sequencing have revealed that, for several bacterial species, the rate of base-pair substitutions (BPSs) is not constant across the chromosome but varies in a wave-like pattern that is symmetrical about the origin of replication. The experiments reported here demonstrated that, inEscherichia coli, several interacting factors determine the wave. The origin is a major driver of BPS rates. When it is relocated, the BPS rates in a 1,000-kb region surrounding the new origin reproduce the pattern that surrounds the normal origin. However, the pattern across distant regions of the chromosome is unaltered and thus must be determined by other factors. Increasing the deoxynucleoside triphosphate (dNTP) concentration shifts the wave pattern away from the origin, supporting the hypothesis that fluctuations in dNTP pools coincident with replication firing contribute to the variations in the mutation rate. The nucleoid binding proteins (HU and Fis) and the terminus organizing protein (MatP) are also major factors. These proteins alter the three-dimensional structure of the DNA, and results suggest that mutation rates increase when highly structured DNA is replicated. Biases in error correction by proofreading and mismatch repair, both of which may be responsive to dNTP concentrations and DNA structure, also are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.IMPORTANCEIt has been found in several species of bacteria that the rate at which single base pairs are mutated is not constant across the genome but varies in a wave-like pattern that is symmetrical about the origin of replication. UsingEscherichia colias our model system, we show that this pattern is the result of several interconnected factors. First, the timing and progression of replication are important in determining the wave pattern. Second, the three-dimensional structure of the DNA is also a factor, and the results suggest that mutation rates increase when highly structured DNA is replicated. Finally, biases in error correction, which may be responsive both to the progression of DNA synthesis and to DNA structure, are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.


2017 ◽  
Author(s):  
Marcus M. Dillon ◽  
Way Sung ◽  
Michael Lynch ◽  
Vaughn S. Cooper

ABSTRACTThe causes and consequences of spatiotemporal variation in mutation rates remains to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes:Vibrio fischeri, Vibrio cholerae, andBurkholderia cenocepacia. Following five evolution experiments with these bacteria conducted in the near-absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base-substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosome ofV. fischeriandV. cholerae, where concurrently replicated regions experience similar base-substitution mutation rates. The base-substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates as the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base-substitution rates, which along with the inferred ~800 Kb wave period suggests that the source of the periodicity is not sequence-specific but rather a systematic process related to the cell cycle. These results support the notion that base-substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load.


2016 ◽  
Vol 55 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Marie A. Chattaway ◽  
Ulf Schaefer ◽  
Rediat Tewolde ◽  
Timothy J. Dallman ◽  
Claire Jenkins

ABSTRACTEscherichia coliandShigellaspecies are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species ofShigellaare therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982Escherichia coliandShigellasp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasiveE. coliisolates that were misidentified asShigella flexneriorS. boydiiby the kmer ID, and 8 wereS. flexneriisolates misidentified by TB&S asS. boydiidue to nonfunctionalS. flexneriO antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising bothS. boydiiandS. dysenteriaestrains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data.Shigellacan be differentiated fromE. coliand accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species ofShigella, and identified emerging pathoadapted lineages.


2011 ◽  
Vol 2 (2) ◽  
pp. 93-96
Author(s):  
Ritu Agarwal ◽  
Chaman Deep ◽  
Saurabh K Patel ◽  
Ashok K Jain ◽  
Gopal Nath

Objective: To explore the genetic relatedness among the Escherichia coli isolates recovered from rectal mucosa of patients with Ulcerative Colitis(UC) as well as from non specific diarrhoea patients by using ERIC PCR (whole genome analysis). Material & Methods: A total of 44 strains of E coli, each from patients suffering from UC with exacerbation while on maintenance therapy, were isolated to see if there is any association with specific genotype of E coli with the clini-cal condition. For comparison, 20 strains of E coli were also isolated from patients suffering from non specific diarrhoea. These isolates were subjected to ERIC PCR for analysing similarity/ dissimilarity with each other based on the distribution of ERIC sequences in the whole genome of the bacterial species. Results: The dendrogram prepared on the basis of banding pattern showed that majority of UC patients (39/44, 88.6%) grouped in to one major cluster while second major cluster comprised mostly strains isolated from patients with non specific diarrhoea i.e. controls (17/18, 94.4%). Moreover, in the cluster representing UC patients, a total of 11 strains were observed to be genotypically similar followed by 8 strains by ERIC PCR. Conclusion: Our results strongly indicate that specific Escherichia coli strains may be involved/ associated with UC and its relapse. Key Words: Ulcerative colitis; Escherichia coli; ERIC; PCR DOI: http://dx.doi.org/10.3126/ajms.v2i2.4769Asian Journal of Medical Sciences 2 (2011) 93-96


2021 ◽  
Author(s):  
Yuki Kanai ◽  
Saburo Tsuru ◽  
Chikara Furusawa

Operons are a hallmark of the genomic and regulatory architecture of prokaryotes. However, the mechanism by which two genes placed far apart gradually come close and form operons remains to be elucidated. Here, we propose a new model of the origin of operons: Mobile genetic elements called insertion sequences can facilitate the formation of operons by consecutive insertion-deletion-excision reactions. This mechanism barely leaves traces of insertion sequences and is difficult to detect in evolution in nature. We performed, to the best of our knowledge, the first experimental demonstration of operon formation, as a proof of concept. The insertion sequence IS3 and the insertion sequence excision enhancer are genes found in a broad range of bacterial species. We introduced these genes into insertion sequence-less Escherichia coli and found that, supporting our hypothesis, the activity of the two genes altered the expression of genes surrounding IS3, closed a 2.7 kilobase pair gap between a pair of genes, and formed new operons. This study shows how insertion sequences can facilitate the rapid formation of operons through locally increasing the structural mutation rates and highlights how coevolution with mobile elements may shape the organization of prokaryotic genomes and gene regulation.


2021 ◽  
Author(s):  
Marje Kasari ◽  
Villu Kasari ◽  
Mirjam Kärmas ◽  
Arvi Jõers

AbstractEfficient production of biochemicals and proteins in cell factories frequently benefits from a two-stage bioprocess in which growth and production phases are decoupled. Here we describe a novel growth switch based on the permanent removal of the origin of replication (oriC) from the Escherichia coli chromosome. Without oriC, cells cannot initiate a new round of replication and they stop growing while their metabolism remains active. Our system relies on a serine recombinase from bacteriophage phiC31 whose expression is controlled by the temperature-sensitive cI857 repressor from phage lambda. Reporter protein expression in switched cells continues after cessation of growth, leading to protein levels up to five times higher compared to non-switching cells. Switching induces a unique physiological state that is different from both normal exponential and stationary phases. Switched cells remain in this state even when not growing, retain their protein synthesis capacity, and do not induce proteins associated with the stationary phase. Our switcher technology is potentially useful for a range of products and applicable in many bacterial species for decoupling growth and production.


2020 ◽  
Author(s):  
Robert Murphy ◽  
Martin Palm ◽  
Ville Mustonen ◽  
Jonas Warringer ◽  
Anne Farewell ◽  
...  

AbstractEscherichia coli is a common bacterial species in the gastrointestinal tracts of warm-blooded animals and humans. Pathogenic and antimicrobial resistance in E. coli may emerge via host switching from animal reservoirs. Despite its potential clinical importance, knowledge of the population structure of commensal E. coli within wild hosts and the epidemiological links between E. coli in non-human hosts and E. coli in humans is still scarce. In this study, we analysed the whole genome sequencing data of a collection of 119 commensal E. coli recovered from the guts of 68 mammal and bird species in Mexico and Venezuela in the 1990s. We observed low concordance between the population structures of E. coli colonizing wild animals and the phylogeny, taxonomy and ecological and physiological attributes of the host species, with distantly related E. coli often colonizing the same or similar host species and distantly related host species often hosting closely related E. coli. We found no evidence for recent transmission of E. coli genomes from wild animals to either domesticated animals or humans. However, multiple livestock- and human-related virulence factor genes were present in E. coli of wild animals, including virulence factors characteristic for Shiga toxin-producing E. coli (STEC) and atypical enteropathogenic E. coli (aEPEC), where several isolates from wild hosts harboured the locus of enterocyte effacement (LEE) pathogenicity island. Moreover, E. coli in wild animal hosts often harboured known antibiotic resistance determinants, including against ciprofloxacin, aminoglycosides, tetracyclines and beta-lactams, with some determinants present in multiple, distantly related E. coli lineages colonizing very different host animals. We conclude that although the genome pools of E. coli colonizing wild animal and human gut are well separated, they share virulence and antibiotic resistance genes and E. coli underscoring that wild animals could serve as reservoirs for E. coli pathogenicity in human and livestock infections.ImportanceEscherichia coli is a clinically importance bacterial species implicated in human and livestock associated infections worldwide. The bacterium is known to reside in the guts of humans, livestock and wild animals. Although wild animals are recognized to serve as potential reservoirs for pathogenic E. coli strains, the knowledge of the population structure of E. coli in wild hosts is still scarce. In this study we used the fine resolution of whole genome sequencing to provide novel insights into the evolution of E. coli genomes within a broad range of wild animal species (including mammals and birds), the co-evolution of E. coli strains with their hosts and the genetics of pathogenicity of E. coli strains in wild hosts. Our results provide evidence for the clinical importance of wild animals as reservoirs for pathogenic strains and necessitate the inclusion of non-human hosts in the surveillance programs for E. coli infections.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Marcus M. Dillon ◽  
Way Sung ◽  
Michael Lynch ◽  
Vaughn S. Cooper

ABSTRACT The causes and consequences of spatiotemporal variation in mutation rates remain to be explored in nearly all organisms. Here we examine relationships between local mutation rates and replication timing in three bacterial species whose genomes have multiple chromosomes: Vibrio fischeri, Vibrio cholerae, and Burkholderia cenocepacia. Following five mutation accumulation experiments with these bacteria conducted in the near absence of natural selection, the genomes of clones from each lineage were sequenced and analyzed to identify variation in mutation rates and spectra. In lineages lacking mismatch repair, base substitution mutation rates vary in a mirrored wave-like pattern on opposing replichores of the large chromosomes of V. fischeri and V. cholerae, where concurrently replicated regions experience similar base substitution mutation rates. The base substitution mutation rates on the small chromosome are less variable in both species but occur at similar rates to those in the concurrently replicated regions of the large chromosome. Neither nucleotide composition nor frequency of nucleotide motifs differed among regions experiencing high and low base substitution rates, which along with the inferred ~800-kb wave period suggests that the source of the periodicity is not sequence specific but rather a systematic process related to the cell cycle. These results support the notion that base substitution mutation rates are likely to vary systematically across many bacterial genomes, which exposes certain genes to elevated deleterious mutational load. IMPORTANCE That mutation rates vary within bacterial genomes is well known, but the detailed study of these biases has been made possible only recently with contemporary sequencing methods. We applied these methods to understand how bacterial genomes with multiple chromosomes, like those of Vibrio and Burkholderia, might experience heterogeneous mutation rates because of their unusual replication and the greater genetic diversity found on smaller chromosomes. This study captured thousands of mutations and revealed wave-like rate variation that is synchronized with replication timing and not explained by sequence context. The scale of this rate variation over hundreds of kilobases of DNA strongly suggests that a temporally regulated cellular process may generate wave-like variation in mutation risk. These findings add to our understanding of how mutation risk is distributed across bacterial and likely also eukaryotic genomes, owing to their highly conserved replication and repair machinery.


Sign in / Sign up

Export Citation Format

Share Document