scholarly journals MagC, magnetic collection of ultrathin sections for volumetric correlative light and electron microscopy

2019 ◽  
Author(s):  
T. Templier

AbstractThe non-destructive collection of ultrathin sections onto silicon wafers for post-embedding staining and volumetric correlative light and electron microscopy traditionally requires exquisite manual skills and is tedious and unreliable. In MagC introduced here, sample blocks are augmented with a magnetic resin enabling remote actuation and collection of hundreds of sections on wafer. MagC allowed the correlative visualization of neuroanatomical tracers within their ultrastructural volumetric electron microscopy context.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Thomas Templier

The non-destructive collection of ultrathin sections on silicon wafers for post-embedding staining and volumetric correlative light and electron microscopy traditionally requires exquisite manual skills and is tedious and unreliable. In MagC introduced here, sample blocks are augmented with a magnetic resin enabling the remote actuation and collection of hundreds of sections on wafer. MagC allowed the correlative visualization of neuroanatomical tracers within their ultrastructural volumetric electron microscopy context.


Author(s):  
Arvid B. Maunsbach

Structural studies in experimental biology or in pathology are frequently extended from the light to the electron microscopic level. This is often done by cutting both semithin (about 1 μm) and thin sections from the same tissue block after embedding for electron microscopy. However, in many studies it would be of great value to analyse the same structure both by light and electron microscopy, i.e. to be able to study by electron microscopy an object which is first detected by light microscopy in a semithin section. To achieve this, a method has been developed by which ultrathin sections are cut directly from the semithin section containing the object of interest.Semithin sections, about 1 μ in thickness, are cut from Epon or Vestopal embedded tissue. The sections are placed on ordinary glass slides and stained with toluidine blue. The sections are studied in the light microscope without a cover glass or mounted in water.


Author(s):  
S. K. Aggarwal ◽  
P. McAllister ◽  
R. W. Wagner ◽  
B. Rosenberg

Uranyl acetate has been used as an electron stain for en bloc staining as well as for staining ultrathin sections in conjunction with various lead stains (Fig. 1). Present studies reveal that various platinum compounds also show promise as electron stains. Certain platinum compounds have been shown to be effective anti-tumor agents. Of particular interest are the compounds with either uracil or thymine as one of the ligands (cis-Pt(II)-uracil; cis-Pt(II)-thymine). These compounds are amorphous, highly soluble in water and often exhibit an intense blue coloration. These compounds show enough electron density to be used as stains for electron microscopy. Most of the studies are based on various cell lines (human AV, cells, human lymphoma cells, KB cells, Sarcoma-180 ascites cells, chick fibroblasts and HeLa cells) while studies on tissue blocks are in progress.


Author(s):  
Odell T. Minick ◽  
Hidejiro Yokoo ◽  
Fawzia Batti

Vacuolated cells in the liver of young rats were studied by light and electron microscopy following the administration of vitamin A (200 units per gram of body weight). Their characteristics were compared with similar cells found in untreated animals.In rats given vitamin A, cells with vacuolated cytoplasm were a prominent feature. These cells were found mostly in a perisinusoidal location, although some appeared to be in between liver cells (Fig. 1). Electron microscopy confirmed their location in Disse's space adjacent to the sinusoid and in recesses between liver cells. Some appeared to be bordering the lumen of the sinusoid, but careful observation usually revealed a tenuous endothelial process separating the vacuolated cell from the vascular space. In appropriate sections, fenestrations in the thin endothelial processes were noted (Fig. 2, arrow).


Author(s):  
John H. L. Watson ◽  
John L. Swedo ◽  
M. Vrandecic

The ambient temperature and the nature of the storage fluids may well have significant effects upon the post-implantation behavior of venus autografts. A first step in the investigation of such effects is reported here. Experimental conditions have been set which approximate actual operating room procedures. Saphenous veins from dogs have been used as models in the experiments. After removal from the dogs the veins were kept for two hours under four different experimental conditions, viz at either 4°C or 23°C in either physiological saline or whole canine arterial blood. At the end of the two hours they were prepared for light and electron microscopy. Since no obvious changes or damage could be seen in the veins by light microscopy, even with the advantage of tissue specific stains, it was essential that the control of parameters for successful grafts be set by electron microscopy.


Author(s):  
Joseph M. Harb ◽  
James T. Casper ◽  
Vlcki Piaskowski

The application of tissue culture and the newer methodologies of direct cloning and colony formation of human tumor cells in soft agar hold promise as valuable modalities for a variety of diagnostic studies, which include morphological distinction between tumor types by electron microscopy (EM). We present here two cases in which cells in culture expressed distinct morphological features not apparent in the original biopsy specimen. Evaluation of the original biopsies by light and electron microscopy indicated both neoplasms to be undifferentiated sarcomas. Colonies of cells propagated in soft agar displayed features of rhabdomyoblasts in one case, and cultured cells of the second biopsy expressed features of Ewing's sarcoma.


Author(s):  
J.C.S. Kim ◽  
M.G. Jourden ◽  
E.S. Carlisle

Chronic exposure to nitrogen dioxide in rodents has shown that injury reaches a maximum after 24 hours, and a reparative adaptive phase follows (1). Damage occurring in the terminal bronchioles and proximal portions of the alveolar ducts in rats has been extensively studied by both light and electron microscopy (1).The present study was undertaken to compare the response of lung tissue to intermittent exposure to 10 ppm of nitrogen dioxide gas for 4 hours per week, while the hamsters were on a vitamin A deficient diet. Ultrastructural observations made from lung tissues obtained from non-gas exposed, hypovitaminosis A animals and gas exposed animals fed a regular commercially prepared diet have been compared to elucidate the specific effect of vitamin A on nitrogen dioxide gas exposure. The interaction occurring between vitamin A and nitrogen dioxide gas has not previously been investigated.


Author(s):  
J. A. Pollock ◽  
M. Martone ◽  
T. Deerinck ◽  
M. H. Ellisman

Localization of specific proteins in cells by both light and electron microscopy has been facilitate by the availability of antibodies that recognize unique features of these proteins. High resolution localization studies conducted over the last 25 years have allowed biologists to study the synthesis, translocation and ultimate functional sites for many important classes of proteins. Recently, recombinant DNA techniques in molecular biology have allowed the production of specific probes for localization of nucleic acids by “in situ” hybridization. The availability of these probes potentially opens a new set of questions to experimental investigation regarding the subcellular distribution of specific DNA's and RNA's. Nucleic acids have a much lower “copy number” per cell than a typical protein, ranging from one copy to perhaps several thousand. Therefore, sensitive, high resolution techniques are required. There are several reasons why Intermediate Voltage Electron Microscopy (IVEM) and High Voltage Electron Microscopy (HVEM) are most useful for localization of nucleic acids in situ.


Sign in / Sign up

Export Citation Format

Share Document