scholarly journals The niche is not the range: Dispersal and persistence shape mismatches between ecological niches and geographic distributions of plants

2019 ◽  
Author(s):  
Jörn Pagel ◽  
Martina Treurnicht ◽  
William J. Bond ◽  
Tineke Kraaij ◽  
Henning Nottebrock ◽  
...  

AbstractThe ecological niche of a species describes the variation in population growth rates along environmental gradients that drives geographic range dynamics. Niches are thus central for understanding and forecasting species’ geographic distributions. However, theory predicts that migration limitation, source-sink dynamics and time-lagged local extinction can cause mismatches between niches and geographic distributions. It is still unclear how relevant these niche-distribution mismatches are for biodiversity dynamics and how they depend on species life history traits. This is mainly due to a lack of the comprehensive, range-wide demographic data needed to directly infer ecological niches for multiple species. Here we quantify niches from extensive demographic measurements along environmental gradients across the geographic ranges of 26 plant species (Proteaceae; South Africa). We then test whether life history explains variation in species’ niches and niche-distribution mismatches. Niches are generally wider for species with high seed dispersal or persistence abilities. Life history traits also explain the considerable interspecific variation in niche-distribution mismatches: poorer dispersers are absent from larger parts of their potential geographic ranges, whereas species with higher persistence ability more frequently occupy environments outside their ecological niche. Our study thus identifies major demographic and functional determinants of species’ niches and geographic distributions. It highlights that the inference of ecological niches from geographical distributions is most problematic for poorly dispersed and highly persistent species. We conclude that the direct quantification of ecological niches from demographic responses to environmental variation is a crucial step towards a better predictive understanding of biodiversity dynamics under environmental change.

2020 ◽  
Vol 117 (7) ◽  
pp. 3663-3669 ◽  
Author(s):  
Jörn Pagel ◽  
Martina Treurnicht ◽  
William J. Bond ◽  
Tineke Kraaij ◽  
Henning Nottebrock ◽  
...  

The ecological niche of a species describes the variation in population growth rates along environmental gradients that drives geographic range dynamics. Niches are thus central for understanding and forecasting species’ geographic distributions. However, theory predicts that migration limitation, source–sink dynamics, and time-lagged local extinction can cause mismatches between niches and geographic distributions. It is still unclear how relevant these niche–distribution mismatches are for biodiversity dynamics and how they depend on species life-history traits. This is mainly due to a lack of the comprehensive, range-wide demographic data needed to directly infer ecological niches for multiple species. Here we quantify niches from extensive demographic measurements along environmental gradients across the geographic ranges of 26 plant species (Proteaceae; South Africa). We then test whether life history explains variation in species’ niches and niche–distribution mismatches. Niches are generally wider for species with high seed dispersal or persistence abilities. Life-history traits also explain the considerable interspecific variation in niche–distribution mismatches: poorer dispersers are absent from larger parts of their potential geographic ranges, whereas species with higher persistence ability more frequently occupy environments outside their ecological niche. Our study thus identifies major demographic and functional determinants of species’ niches and geographic distributions. It highlights that the inference of ecological niches from geographical distributions is most problematic for poorly dispersed and highly persistent species. We conclude that the direct quantification of ecological niches from demographic responses to environmental variation is a crucial step toward a better predictive understanding of biodiversity dynamics under environmental change.


2018 ◽  
Vol 115 (10) ◽  
pp. 2413-2418 ◽  
Author(s):  
Seema Nayan Sheth ◽  
Amy Lauren Angert

Species’ geographic ranges and climatic niches are likely to be increasingly mismatched due to rapid climate change. If a species’ range and niche are out of equilibrium, then population performance should decrease from high-latitude “leading” range edges, where populations are expanding into recently ameliorated habitats, to low-latitude “trailing” range edges, where populations are contracting from newly unsuitable areas. Demographic compensation is a phenomenon whereby declines in some vital rates are offset by increases in others across time or space. In theory, demographic compensation could increase the range of environments over which populations can succeed and forestall range contraction at trailing edges. An outstanding question is whether range limits and range contractions reflect inadequate demographic compensation across environmental gradients, causing population declines at range edges. We collected demographic data from 32 populations of the scarlet monkeyflower (Erythranthe cardinalis) spanning 11° of latitude in western North America and used integral projection models to evaluate population dynamics and assess demographic compensation across the species’ range. During the 5-y study period, which included multiple years of severe drought and warming, population growth rates decreased from north to south, consistent with leading-trailing dynamics. Southern populations at the trailing range edge declined due to reduced survival, growth, and recruitment, despite compensatory increases in reproduction and faster life-history characteristics. These results suggest that demographic compensation may only delay population collapse without the return of more favorable conditions or the contribution of other buffering mechanisms such as evolutionary rescue.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e54341 ◽  
Author(s):  
Zheng Y. X. Huang ◽  
Willem F. de Boer ◽  
Frank van Langevelde ◽  
Valerie Olson ◽  
Tim M. Blackburn ◽  
...  

2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


Author(s):  
A. Townsend Peterson ◽  
Jorge Soberón ◽  
Richard G. Pearson ◽  
Robert P. Anderson ◽  
Enrique Martínez-Meyer ◽  
...  

This book deals with ecological niche modeling and species distribution modeling, two emerging fields that address the ecological, geographic, and evolutionary dimensions of geographic distributions of species. It provides a conceptual overview of the complex relationships between ecological niches and geographic distributions of species, both across space and (perhaps to a lesser degree) through time. The emphasis is on how that conceptual framework relates to ecological niche modeling and species distribution modeling, which the book argues are complementary and are most broadly applicable to diverse questions regarding the ecology and geography of biodiversity phenomena. Part I of the book introduces the conceptual framework for thinking about and discussing the distributional ecology of species, Part II is concerned with the data and tools that have been used in the early development of the field, and Part III focuses on real-world situations to which these tools have been applied.


Ecosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. e02460 ◽  
Author(s):  
Laurene Pecuchet ◽  
Gabriel Reygondeau ◽  
William W. L. Cheung ◽  
Priscilla Licandro ◽  
P. Daniel van Denderen ◽  
...  

Oikos ◽  
2018 ◽  
Vol 128 (3) ◽  
pp. 416-429 ◽  
Author(s):  
Wibke Peters ◽  
Mark Hebblewhite ◽  
Atle Mysterud ◽  
Daniel Eacker ◽  
A. J. Mark Hewison ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Johannes Alneberg ◽  
Christin Bennke ◽  
Sara Beier ◽  
Carina Bunse ◽  
Christopher Quince ◽  
...  

AbstractThe genome encodes the metabolic and functional capabilities of an organism and should be a major determinant of its ecological niche. Yet, it is unknown if the niche can be predicted directly from the genome. Here, we conduct metagenomic binning on 123 water samples spanning major environmental gradients of the Baltic Sea. The resulting 1961 metagenome-assembled genomes represent 352 species-level clusters that correspond to 1/3 of the metagenome sequences of the prokaryotic size-fraction. By using machine-learning, the placement of a genome cluster along various niche gradients (salinity level, depth, size-fraction) could be predicted based solely on its functional genes. The same approach predicted the genomes’ placement in a virtual niche-space that captures the highest variation in distribution patterns. The predictions generally outperformed those inferred from phylogenetic information. Our study demonstrates a strong link between genome and ecological niche and provides a conceptual framework for predictive ecology based on genomic data.


2018 ◽  
Vol 151 (1) ◽  
pp. 69-72 ◽  
Author(s):  
S. Kudo ◽  
Aki Yamamoto ◽  
Tadao Ichita ◽  
Haruki Tatsuta

AbstractLife history traits, such as clutch size, egg size (weight), developmental periods of eggs, and female body (abdomen) size, were investigated in Japanese species of the genus Elasmostethus Fieber (Hemiptera: Acanthosomatidae): E. amabilis Yamamoto, E. brevis Lindberg, E. humeralis Jakovlev, E. interstinctus (Linnaeus), E. kerzhneri Yamamoto, and E. nubilus (Dallas). With the exception of clutch size, significant differences were observed in the traits among species. No species exhibited maternal care of eggs. These data form a solid basis for future comparative analyses in the family Acanthosomatidae, which contains both subsocial and asocial species.


2019 ◽  
Vol 286 (1909) ◽  
pp. 20191498 ◽  
Author(s):  
Hugo Cayuela ◽  
Kurtuluş Olgun ◽  
Claudio Angelini ◽  
Nazan Üzüm ◽  
Olivier Peyronel ◽  
...  

Actuarial senescence has been viewed for a long time as an inevitable and uniform process. However, the work on senescence has mainly focused on endotherms with deterministic growth and low regeneration capacity during the adult stage, leading to a strong taxonomic bias in the study of ageing. Recent studies have highlighted that senescence could indeed display highly variable trajectories that correlate with species life-history traits. Slow life histories and indeterminate growth seem to be associated with weak and late senescence. Furthermore, high regenerative abilities could lead to negligible senescence in ectotherms. However, demographic data for species that would allow testing of these hypotheses are scarce. Here, we investigated senescence patterns in ‘true salamanders’ from the western Palaearctic. Our results showed that salamanders have slow life histories and that they experience negligible senescence. This pattern was consistent at both intra- and interspecific levels, suggesting that the absence of senescence may be a phylogenetically conserved trait. The regenerative capacities of salamanders, in combination with other physiological and developmental features such as an indeterminate growth and a low metabolic rate, probably explain why these small ectotherms have lifespans similar to that of large endotherms and, in contrast with most amniotes, undergo negligible senescence. Our study seriously challenges the idea that senescence is a ubiquitous phenomenon in the tree of life.


Sign in / Sign up

Export Citation Format

Share Document