scholarly journals Mechanosensitive nuclear asymmetries define a bipolar spindle scaffold to ensure mitotic fidelity

2019 ◽  
Author(s):  
Vanessa Nunes ◽  
Margarida Dantas ◽  
Domingos Castro ◽  
Elisa Vitiello ◽  
Irène Wang ◽  
...  

AbstractDuring prophase, centrosomes need to separate and position to correctly assemble the mitotic spindle. This process occurs through the action of molecular motors, cytoskeletal networks and the nucleus. How the combined activity of these different components is spatiotemporally regulated to ensure efficient spindle assembly remains unclear. Here we show that during prophase the centrosomes-nucleus axis reorients, so that centrosomes are positioned on the shortest nuclear axis at nuclear envelope (NE) breakdown. This centrosomes-nucleus configuration depends on mechanical cues generated by mitotic chromosome condensation on the prophase nucleus. We further show these mechanosensitive cues act through SUN1/2 and NudE+NudEL to enable the polarized loading of Dynein on the NE. Finally, we observe this centrosome configuration favors the establishment of an initial bipolar spindle scaffold, facilitating chromosome capture and accurate segregation, without compromising division plane orientation. We propose that chromosome segregation fidelity depends on the mechanical properties of the prophase nucleus that facilitate spindle assembly by regulating NE-Dynein localization.

2011 ◽  
Vol 44 (5) ◽  
pp. 391-400 ◽  
Author(s):  
P. Silva ◽  
J. Barbosa ◽  
A. V. Nascimento ◽  
J. Faria ◽  
R. Reis ◽  
...  

2017 ◽  
Vol 28 (25) ◽  
pp. 3647-3659 ◽  
Author(s):  
Masashi Yukawa ◽  
Tomoki Kawakami ◽  
Masaki Okazaki ◽  
Kazunori Kume ◽  
Ngang Heok Tang ◽  
...  

Accurate chromosome segregation relies on the bipolar mitotic spindle. In many eukaryotes, spindle formation is driven by the plus-end–directed motor kinesin-5 that generates outward force to establish spindle bipolarity. Its inhibition leads to the emergence of monopolar spindles with mitotic arrest. Intriguingly, simultaneous inactivation of the minus-end–directed motor kinesin-14 restores spindle bipolarity in many systems. Here we show that in fission yeast, three independent pathways contribute to spindle bipolarity in the absence of kinesin-5/Cut7 and kinesin-14/Pkl1. One is kinesin-6/Klp9 that engages with spindle elongation once short bipolar spindles assemble. Klp9 also ensures the medial positioning of anaphase spindles to prevent unequal chromosome segregation. Another is the Alp7/TACC-Alp14/TOG microtubule polymerase complex. Temperature-sensitive alp7cut7pkl1 mutants are arrested with either monopolar or very short spindles. Forced targeting of Alp14 to the spindle pole body is sufficient to render alp7cut7pkl1 triply deleted cells viable and promote spindle assembly, indicating that Alp14-mediated microtubule polymerization from the nuclear face of the spindle pole body could generate outward force in place of Cut7 during early mitosis. The third pathway involves the Ase1/PRC1 microtubule cross-linker that stabilizes antiparallel microtubules. Our study, therefore, unveils multifaceted interplay among kinesin-dependent and -independent pathways leading to mitotic bipolar spindle assembly.


2021 ◽  
Author(s):  
Joanna M Wenda ◽  
Reinier F Prosée ◽  
Caroline Gabus ◽  
Florian A Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


2014 ◽  
Vol 205 (6) ◽  
pp. 781-790 ◽  
Author(s):  
Yuya Kagami ◽  
Keishi Nihira ◽  
Shota Wada ◽  
Masaya Ono ◽  
Mariko Honda ◽  
...  

During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is largely unknown. Here, we show that Mps1 regulates initial chromosome condensation during mitosis. We identify condensin II as a novel Mps1-associated protein. Mps1 phosphorylates one of the condensin II subunits, CAP-H2, at Ser492 during mitosis, and this phosphorylation event is required for the proper loading of condensin II on chromatin. Depletion of Mps1 inhibits chromosomal targeting of condensin II and accurate chromosome condensation during prophase. These findings demonstrate that Mps1 governs chromosomal organization during the early stage of mitosis to facilitate proper chromosome segregation.


1999 ◽  
Vol 112 (21) ◽  
pp. 3591-3601 ◽  
Author(s):  
R. Giet ◽  
C. Prigent

During the past five years, a growing number of serine-threonine kinases highly homologous to the Saccharomyces cerevisiae Ipl1p kinase have been isolated in various organisms. A Drosophila melanogaster homologue, aurora, was the first to be isolated from a multicellular organism. Since then, several related kinases have been found in mammalian cells. They localise to the mitotic apparatus: in the centrosome, at the poles of the bipolar spindle or in the midbody. The kinases are necessary for completion of mitotic events such as centrosome separation, bipolar spindle assembly and chromosome segregation. Extensive research is now focusing on these proteins because the three human homologues are overexpressed in various primary cancers. Furthermore, overexpression of one of these kinases transforms cells. Because of the myriad of kinases identified, we suggest a generic name: Aurora/Ipl1p-related kinase (AIRK). We denote AIRKs with a species prefix and a number, e.g. HsAIRK1.


Cell Reports ◽  
2014 ◽  
Vol 8 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Roy G.H.P. van Heesbeen ◽  
Marvin E. Tanenbaum ◽  
René H. Medema

2020 ◽  
Vol 117 (22) ◽  
pp. 12131-12142 ◽  
Author(s):  
Christian F. Nielsen ◽  
Tao Zhang ◽  
Marin Barisic ◽  
Paul Kalitsis ◽  
Damien F. Hudson

Topoisomerase IIα (TOP2A) is a core component of mitotic chromosomes and important for establishing mitotic chromosome condensation. The primary roles of TOP2A in mitosis have been difficult to decipher due to its multiple functions across the cell cycle. To more precisely understand the role of TOP2A in mitosis, we used the auxin-inducible degron (AID) system to rapidly degrade the protein at different stages of the human cell cycle. Removal of TOP2A prior to mitosis does not affect prophase timing or the initiation of chromosome condensation. Instead, it prevents chromatin condensation in prometaphase, extends the length of prometaphase, and ultimately causes cells to exit mitosis without chromosome segregation occurring. Surprisingly, we find that removal of TOP2A from cells arrested in prometaphase or metaphase cause dramatic loss of compacted mitotic chromosome structure and conclude that TOP2A is crucial for maintenance of mitotic chromosomes. Treatments with drugs used to poison/inhibit TOP2A function, such as etoposide and ICRF-193, do not phenocopy the effects on chromosome structure of TOP2A degradation by AID. Our data point to a role for TOP2A as a structural chromosome maintenance enzyme locking in condensation states once sufficient compaction is achieved.


2021 ◽  
Author(s):  
Joanna M. Wenda ◽  
Reinier F. Prosée ◽  
Caroline Gabus ◽  
Florian A. Steiner

Centromeres are chromosomal regions that serve as sites for kinetochore formation and microtubule attachment, processes that are essential for chromosome segregation during mitosis. Centromeres are almost universally defined by the histone variant CENP-A. In the holocentric nematode C. elegans, CENP-A deposition depends on the loading factor KNL-2. Depletion of either CENP-A or KNL-2 results in defects in centromere maintenance, chromosome condensation and kinetochore formation, leading to chromosome segregation failure. Here, we show that KNL-2 is phosphorylated by CDK-1 in vitro, and that mutation of three C-terminal phosphorylation sites causes chromosome segregation defects and an increase in embryonic lethality. In strains expressing phosphodeficient KNL-2, CENP-A and kinetochore proteins are properly localised, indicating that the role of KNL-2 in centromere maintenance is not affected. Instead, the mutant embryos exhibit reduced mitotic levels of condensin II on chromosomes and significant chromosome condensation impairment. Our findings separate the functions of KNL-2 in CENP-A loading and chromosome condensation and demonstrate that KNL-2 phosphorylation regulates the cooperation between centromeric regions and the condensation machinery in C. elegans.


2017 ◽  
Author(s):  
Ahmed M.O. Elbatsh ◽  
Jonne A. Raaijmakers ◽  
Robin H. van der Weide ◽  
Jelmi Kuit de Bos ◽  
Hans Teunissen ◽  
...  

ABSTRACTChromosome condensation by condensin is essential for faithful chromosome segregation. Metazoans have two complexes, named condensin I and II. Both are thought to act by creating looped structures in DNA, but how they do so is unknown. Condensin’s SMC subunits together form a composite ATPase with two pseudo-symmetric ATPase sites. We reveal that these sites have opposite functions in the condensation process. One site drives condensation, while the other site rather has a dampening function. Mutation of this dampener site hyperactivates both condensin I and II complexes. We find that hyperactive condensin I efficiently shortens chromosomes in the total absence of condensin II. The two complexes form loops with different lengths, and specifically condensin II is key to the decatenation of sister chromatids and the formation of a straight chromosomal axis.


2019 ◽  
Vol 116 (32) ◽  
pp. 15967-15972 ◽  
Author(s):  
Zhihui Xue ◽  
Changzhen Liu ◽  
Wenqing Shi ◽  
Yongjie Miao ◽  
Yi Shen ◽  
...  

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1. In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB. Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.


Sign in / Sign up

Export Citation Format

Share Document